Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Indicator Functions
indconst1
Next ⟩
indpi1
Metamath Proof Explorer
Ascii
Unicode
Theorem
indconst1
Description:
Indicator of the whole set.
(Contributed by
Thierry Arnoux
, 25-Jan-2026)
Ref
Expression
Assertion
indconst1
⊢
O
∈
V
→
𝟙
O
⁡
O
=
O
×
1
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
O
⊆
O
2
indval2
⊢
O
∈
V
∧
O
⊆
O
→
𝟙
O
⁡
O
=
O
×
1
∪
O
∖
O
×
0
3
1
2
mpan2
⊢
O
∈
V
→
𝟙
O
⁡
O
=
O
×
1
∪
O
∖
O
×
0
4
difid
⊢
O
∖
O
=
∅
5
4
xpeq1i
⊢
O
∖
O
×
0
=
∅
×
0
6
0xp
⊢
∅
×
0
=
∅
7
5
6
eqtri
⊢
O
∖
O
×
0
=
∅
8
7
a1i
⊢
O
∈
V
→
O
∖
O
×
0
=
∅
9
8
uneq2d
⊢
O
∈
V
→
O
×
1
∪
O
∖
O
×
0
=
O
×
1
∪
∅
10
un0
⊢
O
×
1
∪
∅
=
O
×
1
11
10
a1i
⊢
O
∈
V
→
O
×
1
∪
∅
=
O
×
1
12
3
9
11
3eqtrd
⊢
O
∈
V
→
𝟙
O
⁡
O
=
O
×
1