| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
⊢ ∅ ⊆ 𝑂 |
| 2 |
|
indval2 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ∅ ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ ∅ ) = ( ( ∅ × { 1 } ) ∪ ( ( 𝑂 ∖ ∅ ) × { 0 } ) ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ‘ ∅ ) = ( ( ∅ × { 1 } ) ∪ ( ( 𝑂 ∖ ∅ ) × { 0 } ) ) ) |
| 4 |
|
0xp |
⊢ ( ∅ × { 1 } ) = ∅ |
| 5 |
|
dif0 |
⊢ ( 𝑂 ∖ ∅ ) = 𝑂 |
| 6 |
5
|
xpeq1i |
⊢ ( ( 𝑂 ∖ ∅ ) × { 0 } ) = ( 𝑂 × { 0 } ) |
| 7 |
4 6
|
uneq12i |
⊢ ( ( ∅ × { 1 } ) ∪ ( ( 𝑂 ∖ ∅ ) × { 0 } ) ) = ( ∅ ∪ ( 𝑂 × { 0 } ) ) |
| 8 |
7
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ( ( ∅ × { 1 } ) ∪ ( ( 𝑂 ∖ ∅ ) × { 0 } ) ) = ( ∅ ∪ ( 𝑂 × { 0 } ) ) ) |
| 9 |
|
0un |
⊢ ( ∅ ∪ ( 𝑂 × { 0 } ) ) = ( 𝑂 × { 0 } ) |
| 10 |
9
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ( ∅ ∪ ( 𝑂 × { 0 } ) ) = ( 𝑂 × { 0 } ) ) |
| 11 |
3 8 10
|
3eqtrd |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ‘ ∅ ) = ( 𝑂 × { 0 } ) ) |