Metamath Proof Explorer


Theorem indconst0

Description: Indicator of the empty set. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Assertion indconst0 O V 𝟙 O = O × 0

Proof

Step Hyp Ref Expression
1 0ss O
2 indval2 O V O 𝟙 O = × 1 O × 0
3 1 2 mpan2 O V 𝟙 O = × 1 O × 0
4 0xp × 1 =
5 dif0 O = O
6 5 xpeq1i O × 0 = O × 0
7 4 6 uneq12i × 1 O × 0 = O × 0
8 7 a1i O V × 1 O × 0 = O × 0
9 0un O × 0 = O × 0
10 9 a1i O V O × 0 = O × 0
11 3 8 10 3eqtrd O V 𝟙 O = O × 0