| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplympl.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplympl.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplympl.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
esplympl.k |
|- ( ph -> K e. NN0 ) |
| 5 |
|
esplymhp.1 |
|- H = ( I mHomP R ) |
| 6 |
2
|
ad2antrr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> I e. Fin ) |
| 7 |
|
simpr |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( _Ind ` I ) ` b ) = d ) |
| 8 |
6
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> I e. Fin ) |
| 9 |
|
ssrab2 |
|- { c e. ~P I | ( # ` c ) = K } C_ ~P I |
| 10 |
9
|
a1i |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) |
| 11 |
10
|
sselda |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) -> b e. ~P I ) |
| 12 |
11
|
elpwid |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) -> b C_ I ) |
| 13 |
12
|
adantr |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> b C_ I ) |
| 14 |
|
indf |
|- ( ( I e. Fin /\ b C_ I ) -> ( ( _Ind ` I ) ` b ) : I --> { 0 , 1 } ) |
| 15 |
8 13 14
|
syl2anc |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( _Ind ` I ) ` b ) : I --> { 0 , 1 } ) |
| 16 |
7 15
|
feq1dd |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> d : I --> { 0 , 1 } ) |
| 17 |
|
indf1o |
|- ( I e. Fin -> ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) ) |
| 18 |
|
f1of |
|- ( ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 19 |
2 17 18
|
3syl |
|- ( ph -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 20 |
19
|
ffund |
|- ( ph -> Fun ( _Ind ` I ) ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> Fun ( _Ind ` I ) ) |
| 22 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 23 |
1
|
ssrab3 |
|- D C_ ( NN0 ^m I ) |
| 24 |
22 23
|
ssexi |
|- D e. _V |
| 25 |
24
|
a1i |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> D e. _V ) |
| 26 |
3
|
ad2antrr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> R e. Ring ) |
| 27 |
4
|
ad2antrr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> K e. NN0 ) |
| 28 |
1 6 26 27
|
esplylem |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) |
| 29 |
|
simplr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. D ) |
| 30 |
|
simpr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) |
| 31 |
30
|
neneqd |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> -. ( ( ( I eSymPoly R ) ` K ) ` d ) = ( 0g ` R ) ) |
| 32 |
|
indf |
|- ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 33 |
25 28 32
|
syl2anc |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 34 |
33
|
adantr |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 35 |
29
|
adantr |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> d e. D ) |
| 36 |
34 35
|
ffvelcdmd |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) e. { 0 , 1 } ) |
| 37 |
|
simpr |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) |
| 38 |
|
elprn2 |
|- ( ( ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) e. { 0 , 1 } /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 0 ) |
| 39 |
36 37 38
|
syl2anc |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 0 ) |
| 40 |
39
|
fveq2d |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) = ( ( ZRHom ` R ) ` 0 ) ) |
| 41 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 42 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 43 |
41 42
|
zrh0 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 44 |
3 43
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 45 |
44
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 46 |
40 45
|
eqtrd |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) = ( 0g ` R ) ) |
| 47 |
1 2 3 4
|
esplyfval |
|- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 48 |
47
|
ad2antrr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 49 |
48
|
fveq1d |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` d ) ) |
| 50 |
33 29
|
fvco3d |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` d ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) ) |
| 51 |
49 50
|
eqtrd |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) ) |
| 52 |
51 30
|
eqnetrrd |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) =/= ( 0g ` R ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) =/= ( 0g ` R ) ) |
| 54 |
46 53
|
pm2.21ddne |
|- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( 0g ` R ) ) |
| 55 |
31 54
|
mtand |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> -. ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) |
| 56 |
|
nne |
|- ( -. ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 <-> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 1 ) |
| 57 |
55 56
|
sylib |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 1 ) |
| 58 |
|
ind1a |
|- ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D /\ d e. D ) -> ( ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 1 <-> d e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) |
| 59 |
58
|
biimpa |
|- ( ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D /\ d e. D ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 1 ) -> d e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) |
| 60 |
25 28 29 57 59
|
syl31anc |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) |
| 61 |
|
fvelima |
|- ( ( Fun ( _Ind ` I ) /\ d e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) -> E. b e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` b ) = d ) |
| 62 |
21 60 61
|
syl2anc |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> E. b e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` b ) = d ) |
| 63 |
16 62
|
r19.29a |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d : I --> { 0 , 1 } ) |
| 64 |
6 63
|
indfsid |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d = ( ( _Ind ` I ) ` ( d supp 0 ) ) ) |
| 65 |
64
|
oveq2d |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum d ) = ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) ) |
| 66 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
| 67 |
66
|
a1i |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> NN0 e. ( SubMnd ` CCfld ) ) |
| 68 |
23
|
a1i |
|- ( ph -> D C_ ( NN0 ^m I ) ) |
| 69 |
68
|
sselda |
|- ( ( ph /\ d e. D ) -> d e. ( NN0 ^m I ) ) |
| 70 |
69
|
adantr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. ( NN0 ^m I ) ) |
| 71 |
6 67 70
|
elmaprd |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d : I --> NN0 ) |
| 72 |
|
eqid |
|- ( CCfld |`s NN0 ) = ( CCfld |`s NN0 ) |
| 73 |
6 67 71 72
|
gsumsubm |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum d ) = ( ( CCfld |`s NN0 ) gsum d ) ) |
| 74 |
|
suppssdm |
|- ( d supp 0 ) C_ dom d |
| 75 |
2
|
adantr |
|- ( ( ph /\ d e. D ) -> I e. Fin ) |
| 76 |
|
nn0ex |
|- NN0 e. _V |
| 77 |
76
|
a1i |
|- ( ( ph /\ d e. D ) -> NN0 e. _V ) |
| 78 |
75 77 69
|
elmaprd |
|- ( ( ph /\ d e. D ) -> d : I --> NN0 ) |
| 79 |
78
|
fdmd |
|- ( ( ph /\ d e. D ) -> dom d = I ) |
| 80 |
79
|
adantr |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> dom d = I ) |
| 81 |
74 80
|
sseqtrid |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( d supp 0 ) C_ I ) |
| 82 |
6 81
|
ssfid |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( d supp 0 ) e. Fin ) |
| 83 |
6 81 82
|
gsumind |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) = ( # ` ( d supp 0 ) ) ) |
| 84 |
7
|
oveq1d |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( ( _Ind ` I ) ` b ) supp 0 ) = ( d supp 0 ) ) |
| 85 |
|
indsupp |
|- ( ( I e. Fin /\ b C_ I ) -> ( ( ( _Ind ` I ) ` b ) supp 0 ) = b ) |
| 86 |
8 13 85
|
syl2anc |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( ( _Ind ` I ) ` b ) supp 0 ) = b ) |
| 87 |
84 86
|
eqtr3d |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( d supp 0 ) = b ) |
| 88 |
87
|
fveq2d |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` ( d supp 0 ) ) = ( # ` b ) ) |
| 89 |
|
fveqeq2 |
|- ( c = b -> ( ( # ` c ) = K <-> ( # ` b ) = K ) ) |
| 90 |
|
simplr |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> b e. { c e. ~P I | ( # ` c ) = K } ) |
| 91 |
89 90
|
elrabrd |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` b ) = K ) |
| 92 |
88 91
|
eqtrd |
|- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` ( d supp 0 ) ) = K ) |
| 93 |
92 62
|
r19.29a |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( # ` ( d supp 0 ) ) = K ) |
| 94 |
83 93
|
eqtrd |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) = K ) |
| 95 |
65 73 94
|
3eqtr3d |
|- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) |
| 96 |
95
|
ex |
|- ( ( ph /\ d e. D ) -> ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) |
| 97 |
96
|
ralrimiva |
|- ( ph -> A. d e. D ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) |
| 98 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 99 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
| 100 |
1
|
psrbasfsupp |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 101 |
1 2 3 4 99
|
esplympl |
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) |
| 102 |
5 98 99 42 100 4 101
|
ismhp3 |
|- ( ph -> ( ( ( I eSymPoly R ) ` K ) e. ( H ` K ) <-> A. d e. D ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) ) |
| 103 |
97 102
|
mpbird |
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( H ` K ) ) |