| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfv.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplyfv.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplyfv.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
esplyfv.k |
|- ( ph -> K e. ( 0 ... ( # ` I ) ) ) |
| 5 |
|
esplyfv.f |
|- ( ph -> F e. D ) |
| 6 |
|
esplyfv.0 |
|- .0. = ( 0g ` R ) |
| 7 |
|
esplyfv.1 |
|- .1. = ( 1r ` R ) |
| 8 |
|
esplyfv1.1 |
|- ( ph -> ran F C_ { 0 , 1 } ) |
| 9 |
|
elfznn0 |
|- ( K e. ( 0 ... ( # ` I ) ) -> K e. NN0 ) |
| 10 |
4 9
|
syl |
|- ( ph -> K e. NN0 ) |
| 11 |
1 2 3 10
|
esplyfval |
|- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 12 |
11
|
fveq1d |
|- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` F ) ) |
| 13 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 14 |
1
|
ssrab3 |
|- D C_ ( NN0 ^m I ) |
| 15 |
13 14
|
ssexi |
|- D e. _V |
| 16 |
15
|
a1i |
|- ( ph -> D e. _V ) |
| 17 |
|
nfv |
|- F/ d ph |
| 18 |
|
indf1o |
|- ( I e. Fin -> ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) ) |
| 19 |
|
f1of |
|- ( ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 20 |
2 18 19
|
3syl |
|- ( ph -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 21 |
20
|
ffund |
|- ( ph -> Fun ( _Ind ` I ) ) |
| 22 |
|
breq1 |
|- ( h = ( ( _Ind ` I ) ` d ) -> ( h finSupp 0 <-> ( ( _Ind ` I ) ` d ) finSupp 0 ) ) |
| 23 |
|
nn0ex |
|- NN0 e. _V |
| 24 |
23
|
a1i |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> NN0 e. _V ) |
| 25 |
2
|
adantr |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> I e. Fin ) |
| 26 |
|
ssrab2 |
|- { c e. ~P I | ( # ` c ) = K } C_ ~P I |
| 27 |
26
|
a1i |
|- ( ph -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) |
| 28 |
27
|
sselda |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> d e. ~P I ) |
| 29 |
28
|
elpwid |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> d C_ I ) |
| 30 |
|
indf |
|- ( ( I e. Fin /\ d C_ I ) -> ( ( _Ind ` I ) ` d ) : I --> { 0 , 1 } ) |
| 31 |
25 29 30
|
syl2anc |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) : I --> { 0 , 1 } ) |
| 32 |
|
0nn0 |
|- 0 e. NN0 |
| 33 |
32
|
a1i |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> 0 e. NN0 ) |
| 34 |
|
1nn0 |
|- 1 e. NN0 |
| 35 |
34
|
a1i |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> 1 e. NN0 ) |
| 36 |
33 35
|
prssd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> { 0 , 1 } C_ NN0 ) |
| 37 |
31 36
|
fssd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) : I --> NN0 ) |
| 38 |
24 25 37
|
elmapdd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) e. ( NN0 ^m I ) ) |
| 39 |
31 25 33
|
fidmfisupp |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) finSupp 0 ) |
| 40 |
22 38 39
|
elrabd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 41 |
40 1
|
eleqtrrdi |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) e. D ) |
| 42 |
17 21 41
|
funimassd |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) |
| 43 |
|
indf |
|- ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 44 |
16 42 43
|
syl2anc |
|- ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 45 |
44 5
|
fvco3d |
|- ( ph -> ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` F ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` F ) ) ) |
| 46 |
|
indfval |
|- ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D /\ F e. D ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` F ) = if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , 1 , 0 ) ) |
| 47 |
15 42 5 46
|
mp3an2i |
|- ( ph -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` F ) = if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , 1 , 0 ) ) |
| 48 |
47
|
fveq2d |
|- ( ph -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` F ) ) = ( ( ZRHom ` R ) ` if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , 1 , 0 ) ) ) |
| 49 |
|
fvif |
|- ( ( ZRHom ` R ) ` if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , 1 , 0 ) ) = if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , ( ( ZRHom ` R ) ` 1 ) , ( ( ZRHom ` R ) ` 0 ) ) |
| 50 |
49
|
a1i |
|- ( ph -> ( ( ZRHom ` R ) ` if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , 1 , 0 ) ) = if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , ( ( ZRHom ` R ) ` 1 ) , ( ( ZRHom ` R ) ` 0 ) ) ) |
| 51 |
|
simpr |
|- ( ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( ( _Ind ` I ) ` d ) = F ) |
| 52 |
51
|
oveq1d |
|- ( ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( ( ( _Ind ` I ) ` d ) supp 0 ) = ( F supp 0 ) ) |
| 53 |
|
indsupp |
|- ( ( I e. Fin /\ d C_ I ) -> ( ( ( _Ind ` I ) ` d ) supp 0 ) = d ) |
| 54 |
25 29 53
|
syl2anc |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( ( _Ind ` I ) ` d ) supp 0 ) = d ) |
| 55 |
54
|
adantr |
|- ( ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( ( ( _Ind ` I ) ` d ) supp 0 ) = d ) |
| 56 |
52 55
|
eqtr3d |
|- ( ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( F supp 0 ) = d ) |
| 57 |
56
|
fveq2d |
|- ( ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( # ` ( F supp 0 ) ) = ( # ` d ) ) |
| 58 |
|
fveqeq2 |
|- ( c = d -> ( ( # ` c ) = K <-> ( # ` d ) = K ) ) |
| 59 |
|
simpr |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> d e. { c e. ~P I | ( # ` c ) = K } ) |
| 60 |
58 59
|
elrabrd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( # ` d ) = K ) |
| 61 |
60
|
adantr |
|- ( ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( # ` d ) = K ) |
| 62 |
57 61
|
eqtrd |
|- ( ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( # ` ( F supp 0 ) ) = K ) |
| 63 |
62
|
adantllr |
|- ( ( ( ( ph /\ F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = F ) -> ( # ` ( F supp 0 ) ) = K ) |
| 64 |
20
|
ffnd |
|- ( ph -> ( _Ind ` I ) Fn ~P I ) |
| 65 |
64 27
|
fvelimabd |
|- ( ph -> ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) <-> E. d e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` d ) = F ) ) |
| 66 |
65
|
biimpa |
|- ( ( ph /\ F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) -> E. d e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` d ) = F ) |
| 67 |
63 66
|
r19.29a |
|- ( ( ph /\ F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) -> ( # ` ( F supp 0 ) ) = K ) |
| 68 |
|
fveqeq2 |
|- ( d = ( F supp 0 ) -> ( ( ( _Ind ` I ) ` d ) = F <-> ( ( _Ind ` I ) ` ( F supp 0 ) ) = F ) ) |
| 69 |
|
fveqeq2 |
|- ( c = ( F supp 0 ) -> ( ( # ` c ) = K <-> ( # ` ( F supp 0 ) ) = K ) ) |
| 70 |
2
|
adantr |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> I e. Fin ) |
| 71 |
|
suppssdm |
|- ( F supp 0 ) C_ dom F |
| 72 |
23
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 73 |
14 5
|
sselid |
|- ( ph -> F e. ( NN0 ^m I ) ) |
| 74 |
2 72 73
|
elmaprd |
|- ( ph -> F : I --> NN0 ) |
| 75 |
71 74
|
fssdm |
|- ( ph -> ( F supp 0 ) C_ I ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> ( F supp 0 ) C_ I ) |
| 77 |
70 76
|
sselpwd |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> ( F supp 0 ) e. ~P I ) |
| 78 |
|
simpr |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> ( # ` ( F supp 0 ) ) = K ) |
| 79 |
69 77 78
|
elrabd |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> ( F supp 0 ) e. { c e. ~P I | ( # ` c ) = K } ) |
| 80 |
74
|
ffnd |
|- ( ph -> F Fn I ) |
| 81 |
|
df-f |
|- ( F : I --> { 0 , 1 } <-> ( F Fn I /\ ran F C_ { 0 , 1 } ) ) |
| 82 |
80 8 81
|
sylanbrc |
|- ( ph -> F : I --> { 0 , 1 } ) |
| 83 |
2 82
|
indfsid |
|- ( ph -> F = ( ( _Ind ` I ) ` ( F supp 0 ) ) ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> F = ( ( _Ind ` I ) ` ( F supp 0 ) ) ) |
| 85 |
84
|
eqcomd |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> ( ( _Ind ` I ) ` ( F supp 0 ) ) = F ) |
| 86 |
68 79 85
|
rspcedvdw |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> E. d e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` d ) = F ) |
| 87 |
65
|
biimpar |
|- ( ( ph /\ E. d e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` d ) = F ) -> F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) |
| 88 |
86 87
|
syldan |
|- ( ( ph /\ ( # ` ( F supp 0 ) ) = K ) -> F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) |
| 89 |
67 88
|
impbida |
|- ( ph -> ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) <-> ( # ` ( F supp 0 ) ) = K ) ) |
| 90 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 91 |
90 7
|
zrh1 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = .1. ) |
| 92 |
3 91
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 1 ) = .1. ) |
| 93 |
90 6
|
zrh0 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 0 ) = .0. ) |
| 94 |
3 93
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 0 ) = .0. ) |
| 95 |
89 92 94
|
ifbieq12d |
|- ( ph -> if ( F e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) , ( ( ZRHom ` R ) ` 1 ) , ( ( ZRHom ` R ) ` 0 ) ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) |
| 96 |
48 50 95
|
3eqtrd |
|- ( ph -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` F ) ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) |
| 97 |
12 45 96
|
3eqtrd |
|- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) |