Metamath Proof Explorer


Theorem esplyfv1

Description: Coefficient for the K -th elementary symmetric polynomial and a bag of variables F where variables are not raised to a power. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyfv.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
esplyfv.i ( 𝜑𝐼 ∈ Fin )
esplyfv.r ( 𝜑𝑅 ∈ Ring )
esplyfv.k ( 𝜑𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) )
esplyfv.f ( 𝜑𝐹𝐷 )
esplyfv.0 0 = ( 0g𝑅 )
esplyfv.1 1 = ( 1r𝑅 )
esplyfv1.1 ( 𝜑 → ran 𝐹 ⊆ { 0 , 1 } )
Assertion esplyfv1 ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) )

Proof

Step Hyp Ref Expression
1 esplyfv.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
2 esplyfv.i ( 𝜑𝐼 ∈ Fin )
3 esplyfv.r ( 𝜑𝑅 ∈ Ring )
4 esplyfv.k ( 𝜑𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) )
5 esplyfv.f ( 𝜑𝐹𝐷 )
6 esplyfv.0 0 = ( 0g𝑅 )
7 esplyfv.1 1 = ( 1r𝑅 )
8 esplyfv1.1 ( 𝜑 → ran 𝐹 ⊆ { 0 , 1 } )
9 elfznn0 ( 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) → 𝐾 ∈ ℕ0 )
10 4 9 syl ( 𝜑𝐾 ∈ ℕ0 )
11 1 2 3 10 esplyfval ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) )
12 11 fveq1d ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝐹 ) )
13 ovex ( ℕ0m 𝐼 ) ∈ V
14 1 ssrab3 𝐷 ⊆ ( ℕ0m 𝐼 )
15 13 14 ssexi 𝐷 ∈ V
16 15 a1i ( 𝜑𝐷 ∈ V )
17 nfv 𝑑 𝜑
18 indf1o ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) )
19 f1of ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
20 2 18 19 3syl ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
21 20 ffund ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) )
22 breq1 ( = ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) → ( finSupp 0 ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 ) )
23 nn0ex 0 ∈ V
24 23 a1i ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ℕ0 ∈ V )
25 2 adantr ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝐼 ∈ Fin )
26 ssrab2 { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼
27 26 a1i ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 )
28 27 sselda ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ 𝒫 𝐼 )
29 28 elpwid ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑𝐼 )
30 indf ( ( 𝐼 ∈ Fin ∧ 𝑑𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } )
31 25 29 30 syl2anc ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } )
32 0nn0 0 ∈ ℕ0
33 32 a1i ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 0 ∈ ℕ0 )
34 1nn0 1 ∈ ℕ0
35 34 a1i ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 1 ∈ ℕ0 )
36 33 35 prssd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → { 0 , 1 } ⊆ ℕ0 )
37 31 36 fssd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ ℕ0 )
38 24 25 37 elmapdd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ ( ℕ0m 𝐼 ) )
39 31 25 33 fidmfisupp ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 )
40 22 38 39 elrabd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
41 40 1 eleqtrrdi ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ 𝐷 )
42 17 21 41 funimassd ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 )
43 indf ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } )
44 16 42 43 syl2anc ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } )
45 44 5 fvco3d ( 𝜑 → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝐹 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) )
46 indfval ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷𝐹𝐷 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) )
47 15 42 5 46 mp3an2i ( 𝜑 → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) )
48 47 fveq2d ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) )
49 fvif ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) )
50 49 a1i ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) )
51 simpr ( ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 )
52 51 oveq1d ( ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = ( 𝐹 supp 0 ) )
53 indsupp ( ( 𝐼 ∈ Fin ∧ 𝑑𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = 𝑑 )
54 25 29 53 syl2anc ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = 𝑑 )
55 54 adantr ( ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = 𝑑 )
56 52 55 eqtr3d ( ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( 𝐹 supp 0 ) = 𝑑 )
57 56 fveq2d ( ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = ( ♯ ‘ 𝑑 ) )
58 fveqeq2 ( 𝑐 = 𝑑 → ( ( ♯ ‘ 𝑐 ) = 𝐾 ↔ ( ♯ ‘ 𝑑 ) = 𝐾 ) )
59 simpr ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } )
60 58 59 elrabrd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ♯ ‘ 𝑑 ) = 𝐾 )
61 60 adantr ( ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ 𝑑 ) = 𝐾 )
62 57 61 eqtrd ( ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 )
63 62 adantllr ( ( ( ( 𝜑𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 )
64 20 ffnd ( 𝜑 → ( 𝟭 ‘ 𝐼 ) Fn 𝒫 𝐼 )
65 64 27 fvelimabd ( 𝜑 → ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ↔ ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) )
66 65 biimpa ( ( 𝜑𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 )
67 63 66 r19.29a ( ( 𝜑𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 )
68 fveqeq2 ( 𝑑 = ( 𝐹 supp 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) = 𝐹 ) )
69 fveqeq2 ( 𝑐 = ( 𝐹 supp 0 ) → ( ( ♯ ‘ 𝑐 ) = 𝐾 ↔ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) )
70 2 adantr ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → 𝐼 ∈ Fin )
71 suppssdm ( 𝐹 supp 0 ) ⊆ dom 𝐹
72 23 a1i ( 𝜑 → ℕ0 ∈ V )
73 14 5 sselid ( 𝜑𝐹 ∈ ( ℕ0m 𝐼 ) )
74 2 72 73 elmaprd ( 𝜑𝐹 : 𝐼 ⟶ ℕ0 )
75 71 74 fssdm ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐼 )
76 75 adantr ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( 𝐹 supp 0 ) ⊆ 𝐼 )
77 70 76 sselpwd ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( 𝐹 supp 0 ) ∈ 𝒫 𝐼 )
78 simpr ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 )
79 69 77 78 elrabd ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( 𝐹 supp 0 ) ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } )
80 74 ffnd ( 𝜑𝐹 Fn 𝐼 )
81 df-f ( 𝐹 : 𝐼 ⟶ { 0 , 1 } ↔ ( 𝐹 Fn 𝐼 ∧ ran 𝐹 ⊆ { 0 , 1 } ) )
82 80 8 81 sylanbrc ( 𝜑𝐹 : 𝐼 ⟶ { 0 , 1 } )
83 2 82 indfsid ( 𝜑𝐹 = ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) )
84 83 adantr ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → 𝐹 = ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) )
85 84 eqcomd ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) = 𝐹 )
86 68 79 85 rspcedvdw ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 )
87 65 biimpar ( ( 𝜑 ∧ ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) )
88 86 87 syldan ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) )
89 67 88 impbida ( 𝜑 → ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ↔ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) )
90 eqid ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 )
91 90 7 zrh1 ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 )
92 3 91 syl ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 )
93 90 6 zrh0 ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 )
94 3 93 syl ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 )
95 89 92 94 ifbieq12d ( 𝜑 → if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) )
96 48 50 95 3eqtrd ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) )
97 12 45 96 3eqtrd ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) )