| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfv.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplyfv.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplyfv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplyfv.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) |
| 5 |
|
esplyfv.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 6 |
|
esplyfv.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
esplyfv.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 8 |
|
esplyfv1.1 |
⊢ ( 𝜑 → ran 𝐹 ⊆ { 0 , 1 } ) |
| 9 |
|
elfznn0 |
⊢ ( 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) → 𝐾 ∈ ℕ0 ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 11 |
1 2 3 10
|
esplyfval |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝐹 ) ) |
| 13 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 14 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) |
| 15 |
13 14
|
ssexi |
⊢ 𝐷 ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑑 𝜑 |
| 18 |
|
indf1o |
⊢ ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 19 |
|
f1of |
⊢ ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 20 |
2 18 19
|
3syl |
⊢ ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 21 |
20
|
ffund |
⊢ ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) ) |
| 22 |
|
breq1 |
⊢ ( ℎ = ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) → ( ℎ finSupp 0 ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 ) ) |
| 23 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ℕ0 ∈ V ) |
| 25 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝐼 ∈ Fin ) |
| 26 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 28 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ 𝒫 𝐼 ) |
| 29 |
28
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ⊆ 𝐼 ) |
| 30 |
|
indf |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 31 |
25 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 32 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 0 ∈ ℕ0 ) |
| 34 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 1 ∈ ℕ0 ) |
| 36 |
33 35
|
prssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → { 0 , 1 } ⊆ ℕ0 ) |
| 37 |
31 36
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ ℕ0 ) |
| 38 |
24 25 37
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 39 |
31 25 33
|
fidmfisupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 ) |
| 40 |
22 38 39
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 41 |
40 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ 𝐷 ) |
| 42 |
17 21 41
|
funimassd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) |
| 43 |
|
indf |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 44 |
16 42 43
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 45 |
44 5
|
fvco3d |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝐹 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) ) |
| 46 |
|
indfval |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ∧ 𝐹 ∈ 𝐷 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) |
| 47 |
15 42 5 46
|
mp3an2i |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) ) |
| 49 |
|
fvif |
⊢ ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , 1 , 0 ) ) = if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) ) |
| 51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) |
| 52 |
51
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = ( 𝐹 supp 0 ) ) |
| 53 |
|
indsupp |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = 𝑑 ) |
| 54 |
25 29 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = 𝑑 ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) supp 0 ) = 𝑑 ) |
| 56 |
52 55
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( 𝐹 supp 0 ) = 𝑑 ) |
| 57 |
56
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = ( ♯ ‘ 𝑑 ) ) |
| 58 |
|
fveqeq2 |
⊢ ( 𝑐 = 𝑑 → ( ( ♯ ‘ 𝑐 ) = 𝐾 ↔ ( ♯ ‘ 𝑑 ) = 𝐾 ) ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) |
| 60 |
58 59
|
elrabrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ♯ ‘ 𝑑 ) = 𝐾 ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ 𝑑 ) = 𝐾 ) |
| 62 |
57 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) |
| 63 |
62
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) |
| 64 |
20
|
ffnd |
⊢ ( 𝜑 → ( 𝟭 ‘ 𝐼 ) Fn 𝒫 𝐼 ) |
| 65 |
64 27
|
fvelimabd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ↔ ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) ) |
| 66 |
65
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) |
| 67 |
63 66
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) |
| 68 |
|
fveqeq2 |
⊢ ( 𝑑 = ( 𝐹 supp 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) = 𝐹 ) ) |
| 69 |
|
fveqeq2 |
⊢ ( 𝑐 = ( 𝐹 supp 0 ) → ( ( ♯ ‘ 𝑐 ) = 𝐾 ↔ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) ) |
| 70 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → 𝐼 ∈ Fin ) |
| 71 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
| 72 |
23
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 73 |
14 5
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 74 |
2 72 73
|
elmaprd |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 75 |
71 74
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 77 |
70 76
|
sselpwd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( 𝐹 supp 0 ) ∈ 𝒫 𝐼 ) |
| 78 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) |
| 79 |
69 77 78
|
elrabd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( 𝐹 supp 0 ) ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) |
| 80 |
74
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 81 |
|
df-f |
⊢ ( 𝐹 : 𝐼 ⟶ { 0 , 1 } ↔ ( 𝐹 Fn 𝐼 ∧ ran 𝐹 ⊆ { 0 , 1 } ) ) |
| 82 |
80 8 81
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ { 0 , 1 } ) |
| 83 |
2 82
|
indfsid |
⊢ ( 𝜑 → 𝐹 = ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → 𝐹 = ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) ) |
| 85 |
84
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝐹 supp 0 ) ) = 𝐹 ) |
| 86 |
68 79 85
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) |
| 87 |
65
|
biimpar |
⊢ ( ( 𝜑 ∧ ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 88 |
86 87
|
syldan |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) → 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 89 |
67 88
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ↔ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) ) |
| 90 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 91 |
90 7
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 ) |
| 92 |
3 91
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 ) |
| 93 |
90 6
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 94 |
3 93
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 95 |
89 92 94
|
ifbieq12d |
⊢ ( 𝜑 → if ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) ) |
| 96 |
48 50 95
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) ) |
| 97 |
12 45 96
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) ) |