| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfv.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplyfv.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplyfv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplyfv.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) |
| 5 |
|
esplyfv.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 6 |
|
esplyfv.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
esplyfv.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 8 |
|
eqeq2 |
⊢ ( if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) = if ( ran 𝐹 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) → ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) ↔ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ran 𝐹 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) ) ) |
| 9 |
|
eqeq2 |
⊢ ( 0 = if ( ran 𝐹 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) → ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = 0 ↔ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ran 𝐹 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) ) ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐼 ∈ Fin ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 , 1 } ) → 𝑅 ∈ Ring ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐹 ∈ 𝐷 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 , 1 } ) → ran 𝐹 ⊆ { 0 , 1 } ) |
| 15 |
1 10 11 12 13 6 7 14
|
esplyfv1 |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐼 ∈ Fin ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → 𝑅 ∈ Ring ) |
| 18 |
|
elfznn0 |
⊢ ( 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) → 𝐾 ∈ ℕ0 ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐾 ∈ ℕ0 ) |
| 21 |
1 16 17 20
|
esplyfval |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 22 |
21
|
fveq1d |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝐹 ) ) |
| 23 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 24 |
1 23
|
rabex2 |
⊢ 𝐷 ∈ V |
| 25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐷 ∈ V ) |
| 26 |
1 16 17 20
|
esplylem |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) |
| 27 |
|
indf |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 28 |
25 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐹 ∈ 𝐷 ) |
| 30 |
28 29
|
fvco3d |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝐹 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) ) |
| 31 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) |
| 32 |
2
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → 𝐼 ∈ Fin ) |
| 33 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 |
| 34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 35 |
34
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ 𝒫 𝐼 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → 𝑑 ∈ 𝒫 𝐼 ) |
| 37 |
36
|
elpwid |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → 𝑑 ⊆ 𝐼 ) |
| 38 |
|
indf |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 39 |
32 37 38
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 40 |
31 39
|
feq1dd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → 𝐹 : 𝐼 ⟶ { 0 , 1 } ) |
| 41 |
40
|
frnd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) → ran 𝐹 ⊆ { 0 , 1 } ) |
| 42 |
|
indf1o |
⊢ ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 43 |
|
f1of |
⊢ ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 44 |
16 42 43
|
3syl |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 45 |
44
|
ffnd |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( 𝟭 ‘ 𝐼 ) Fn 𝒫 𝐼 ) |
| 46 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 47 |
45 46
|
fvelimabd |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ↔ ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) ) |
| 48 |
47
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝐹 ) |
| 49 |
41 48
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ran 𝐹 ⊆ { 0 , 1 } ) |
| 50 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) ∧ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ¬ ran 𝐹 ⊆ { 0 , 1 } ) |
| 51 |
49 50
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ¬ 𝐹 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 52 |
29 51
|
eldifd |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → 𝐹 ∈ ( 𝐷 ∖ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) |
| 53 |
|
ind0 |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ∧ 𝐹 ∈ ( 𝐷 ∖ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) = 0 ) |
| 54 |
24 26 52 53
|
mp3an2i |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) = 0 ) |
| 55 |
54
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) |
| 56 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 57 |
56 6
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 58 |
3 57
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 60 |
55 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝐹 ) ) = 0 ) |
| 61 |
22 30 60
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 0 , 1 } ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = 0 ) |
| 62 |
8 9 15 61
|
ifbothda |
⊢ ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ran 𝐹 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) ) |
| 63 |
|
ifan |
⊢ if ( ( ran 𝐹 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) , 1 , 0 ) = if ( ran 𝐹 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) |
| 64 |
62 63
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝐹 ) = if ( ( ran 𝐹 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) |