Metamath Proof Explorer


Theorem esplyfv

Description: Coefficient for the K -th elementary symmetric polynomial and a bag of variables F : the coefficient is .1. for the bags of exactly K variables, having exponent at most 1 . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyfv.d D = h 0 I | finSupp 0 h
esplyfv.i φ I Fin
esplyfv.r φ R Ring
esplyfv.k φ K 0 I
esplyfv.f φ F D
esplyfv.0 0 ˙ = 0 R
esplyfv.1 1 ˙ = 1 R
Assertion esplyfv Could not format assertion : No typesetting found for |- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( ran F C_ { 0 , 1 } /\ ( # ` ( F supp 0 ) ) = K ) , .1. , .0. ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyfv.d D = h 0 I | finSupp 0 h
2 esplyfv.i φ I Fin
3 esplyfv.r φ R Ring
4 esplyfv.k φ K 0 I
5 esplyfv.f φ F D
6 esplyfv.0 0 ˙ = 0 R
7 esplyfv.1 1 ˙ = 1 R
8 eqeq2 Could not format ( if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) <-> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) : No typesetting found for |- ( if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) <-> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) with typecode |-
9 eqeq2 Could not format ( .0. = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` F ) = .0. <-> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) : No typesetting found for |- ( .0. = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` F ) = .0. <-> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) with typecode |-
10 2 adantr φ ran F 0 1 I Fin
11 3 adantr φ ran F 0 1 R Ring
12 4 adantr φ ran F 0 1 K 0 I
13 5 adantr φ ran F 0 1 F D
14 simpr φ ran F 0 1 ran F 0 1
15 1 10 11 12 13 6 7 14 esplyfv1 Could not format ( ( ph /\ ran F C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) : No typesetting found for |- ( ( ph /\ ran F C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) with typecode |-
16 2 adantr φ ¬ ran F 0 1 I Fin
17 3 adantr φ ¬ ran F 0 1 R Ring
18 elfznn0 K 0 I K 0
19 4 18 syl φ K 0
20 19 adantr φ ¬ ran F 0 1 K 0
21 1 16 17 20 esplyfval Could not format ( ( ph /\ -. ran F C_ { 0 , 1 } ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ( ph /\ -. ran F C_ { 0 , 1 } ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
22 21 fveq1d Could not format ( ( ph /\ -. ran F C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` F ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` F ) ) : No typesetting found for |- ( ( ph /\ -. ran F C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` F ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` F ) ) with typecode |-
23 ovex 0 I V
24 1 23 rabex2 D V
25 24 a1i φ ¬ ran F 0 1 D V
26 1 16 17 20 esplylem φ ¬ ran F 0 1 𝟙 I c 𝒫 I | c = K D
27 indf D V 𝟙 I c 𝒫 I | c = K D 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
28 25 26 27 syl2anc φ ¬ ran F 0 1 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
29 5 adantr φ ¬ ran F 0 1 F D
30 28 29 fvco3d φ ¬ ran F 0 1 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F = ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F
31 simpr φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F 𝟙 I d = F
32 2 ad4antr φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F I Fin
33 ssrab2 c 𝒫 I | c = K 𝒫 I
34 33 a1i φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K c 𝒫 I | c = K 𝒫 I
35 34 sselda φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K d 𝒫 I
36 35 adantr φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F d 𝒫 I
37 36 elpwid φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F d I
38 indf I Fin d I 𝟙 I d : I 0 1
39 32 37 38 syl2anc φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F 𝟙 I d : I 0 1
40 31 39 feq1dd φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F F : I 0 1
41 40 frnd φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F ran F 0 1
42 indf1o I Fin 𝟙 I : 𝒫 I 1-1 onto 0 1 I
43 f1of 𝟙 I : 𝒫 I 1-1 onto 0 1 I 𝟙 I : 𝒫 I 0 1 I
44 16 42 43 3syl φ ¬ ran F 0 1 𝟙 I : 𝒫 I 0 1 I
45 44 ffnd φ ¬ ran F 0 1 𝟙 I Fn 𝒫 I
46 33 a1i φ ¬ ran F 0 1 c 𝒫 I | c = K 𝒫 I
47 45 46 fvelimabd φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F
48 47 biimpa φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F
49 41 48 r19.29a φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K ran F 0 1
50 simplr φ ¬ ran F 0 1 F 𝟙 I c 𝒫 I | c = K ¬ ran F 0 1
51 49 50 pm2.65da φ ¬ ran F 0 1 ¬ F 𝟙 I c 𝒫 I | c = K
52 29 51 eldifd φ ¬ ran F 0 1 F D 𝟙 I c 𝒫 I | c = K
53 ind0 D V 𝟙 I c 𝒫 I | c = K D F D 𝟙 I c 𝒫 I | c = K 𝟙 D 𝟙 I c 𝒫 I | c = K F = 0
54 24 26 52 53 mp3an2i φ ¬ ran F 0 1 𝟙 D 𝟙 I c 𝒫 I | c = K F = 0
55 54 fveq2d φ ¬ ran F 0 1 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F = ℤRHom R 0
56 eqid ℤRHom R = ℤRHom R
57 56 6 zrh0 R Ring ℤRHom R 0 = 0 ˙
58 3 57 syl φ ℤRHom R 0 = 0 ˙
59 58 adantr φ ¬ ran F 0 1 ℤRHom R 0 = 0 ˙
60 55 59 eqtrd φ ¬ ran F 0 1 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F = 0 ˙
61 22 30 60 3eqtrd Could not format ( ( ph /\ -. ran F C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` F ) = .0. ) : No typesetting found for |- ( ( ph /\ -. ran F C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` F ) = .0. ) with typecode |-
62 8 9 15 61 ifbothda Could not format ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) ) : No typesetting found for |- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ran F C_ { 0 , 1 } , if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) , .0. ) ) with typecode |-
63 ifan if ran F 0 1 F supp 0 = K 1 ˙ 0 ˙ = if ran F 0 1 if F supp 0 = K 1 ˙ 0 ˙ 0 ˙
64 62 63 eqtr4di Could not format ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( ran F C_ { 0 , 1 } /\ ( # ` ( F supp 0 ) ) = K ) , .1. , .0. ) ) : No typesetting found for |- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( ran F C_ { 0 , 1 } /\ ( # ` ( F supp 0 ) ) = K ) , .1. , .0. ) ) with typecode |-