Metamath Proof Explorer


Theorem esplysply

Description: The K -th elementary symmetric polynomial is symmetric. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyfv.d D = h 0 I | finSupp 0 h
esplyfv.i φ I Fin
esplyfv.r φ R Ring
esplyfv.k φ K 0 I
Assertion esplysply Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyfv.d D = h 0 I | finSupp 0 h
2 esplyfv.i φ I Fin
3 esplyfv.r φ R Ring
4 esplyfv.k φ K 0 I
5 eqid SymGrp I = SymGrp I
6 eqid Base SymGrp I = Base SymGrp I
7 eqid Base I mPoly R = Base I mPoly R
8 elfznn0 K 0 I K 0
9 4 8 syl φ K 0
10 1 2 3 9 7 esplympl Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
11 2 ad2antrr φ p Base SymGrp I x D I Fin
12 nn0ex 0 V
13 12 a1i φ p Base SymGrp I x D 0 V
14 1 ssrab3 D 0 I
15 14 a1i φ p Base SymGrp I D 0 I
16 15 sselda φ p Base SymGrp I x D x 0 I
17 11 13 16 elmaprd φ p Base SymGrp I x D x : I 0
18 17 fdmd φ p Base SymGrp I x D dom x = I
19 simplr φ p Base SymGrp I x D p Base SymGrp I
20 5 6 symgbasf1o p Base SymGrp I p : I 1-1 onto I
21 19 20 syl φ p Base SymGrp I x D p : I 1-1 onto I
22 f1ofo p : I 1-1 onto I p : I onto I
23 forn p : I onto I ran p = I
24 21 22 23 3syl φ p Base SymGrp I x D ran p = I
25 18 24 eqtr4d φ p Base SymGrp I x D dom x = ran p
26 rncoeq dom x = ran p ran x p = ran x
27 25 26 syl φ p Base SymGrp I x D ran x p = ran x
28 27 sseq1d φ p Base SymGrp I x D ran x p 0 1 ran x 0 1
29 f1ocnv p : I 1-1 onto I p -1 : I 1-1 onto I
30 f1of1 p -1 : I 1-1 onto I p -1 : I 1-1 I
31 21 29 30 3syl φ p Base SymGrp I x D p -1 : I 1-1 I
32 cnvimass x -1 0 0 dom x
33 32 17 fssdm φ p Base SymGrp I x D x -1 0 0 I
34 31 33 11 hashimaf1 φ p Base SymGrp I x D p -1 x -1 0 0 = x -1 0 0
35 c0ex 0 V
36 35 a1i φ p Base SymGrp I x D 0 V
37 simpr φ p Base SymGrp I p Base SymGrp I
38 f1of p : I 1-1 onto I p : I I
39 37 20 38 3syl φ p Base SymGrp I p : I I
40 39 adantr φ p Base SymGrp I x D p : I I
41 17 40 fcod φ p Base SymGrp I x D x p : I 0
42 fsuppeq I Fin 0 V x p : I 0 x p supp 0 = x p -1 0 0
43 42 imp I Fin 0 V x p : I 0 x p supp 0 = x p -1 0 0
44 11 36 41 43 syl21anc φ p Base SymGrp I x D x p supp 0 = x p -1 0 0
45 cnvco x p -1 = p -1 x -1
46 45 imaeq1i x p -1 0 0 = p -1 x -1 0 0
47 imaco p -1 x -1 0 0 = p -1 x -1 0 0
48 46 47 eqtri x p -1 0 0 = p -1 x -1 0 0
49 44 48 eqtrdi φ p Base SymGrp I x D x p supp 0 = p -1 x -1 0 0
50 49 fveq2d φ p Base SymGrp I x D x p supp 0 = p -1 x -1 0 0
51 fsuppeq I Fin 0 V x : I 0 x supp 0 = x -1 0 0
52 51 imp I Fin 0 V x : I 0 x supp 0 = x -1 0 0
53 11 36 17 52 syl21anc φ p Base SymGrp I x D x supp 0 = x -1 0 0
54 53 fveq2d φ p Base SymGrp I x D x supp 0 = x -1 0 0
55 34 50 54 3eqtr4d φ p Base SymGrp I x D x p supp 0 = x supp 0
56 55 eqeq1d φ p Base SymGrp I x D x p supp 0 = K x supp 0 = K
57 28 56 anbi12d φ p Base SymGrp I x D ran x p 0 1 x p supp 0 = K ran x 0 1 x supp 0 = K
58 57 ifbid φ p Base SymGrp I x D if ran x p 0 1 x p supp 0 = K 1 R 0 R = if ran x 0 1 x supp 0 = K 1 R 0 R
59 3 ad2antrr φ p Base SymGrp I x D R Ring
60 4 ad2antrr φ p Base SymGrp I x D K 0 I
61 simpr φ p Base SymGrp I x D x D
62 61 1 eleqtrdi φ p Base SymGrp I x D x h 0 I | finSupp 0 h
63 5 6 11 19 62 mplvrpmlem φ p Base SymGrp I x D x p h 0 I | finSupp 0 h
64 63 1 eleqtrrdi φ p Base SymGrp I x D x p D
65 eqid 0 R = 0 R
66 eqid 1 R = 1 R
67 1 11 59 60 64 65 66 esplyfv Could not format ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) : No typesetting found for |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) with typecode |-
68 1 11 59 60 61 65 66 esplyfv Could not format ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` x ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) : No typesetting found for |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` x ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) with typecode |-
69 58 67 68 3eqtr4d Could not format ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = ( ( ( I eSymPoly R ) ` K ) ` x ) ) : No typesetting found for |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = ( ( ( I eSymPoly R ) ` K ) ` x ) ) with typecode |-
70 5 6 7 1 2 3 10 69 issply Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) ) with typecode |-