| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfv.d |
|
| 2 |
|
esplyfv.i |
|
| 3 |
|
esplyfv.r |
|
| 4 |
|
esplyfv.k |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
elfznn0 |
|
| 9 |
4 8
|
syl |
|
| 10 |
1 2 3 9 7
|
esplympl |
Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) with typecode |- |
| 11 |
2
|
ad2antrr |
|
| 12 |
|
nn0ex |
|
| 13 |
12
|
a1i |
|
| 14 |
1
|
ssrab3 |
|
| 15 |
14
|
a1i |
|
| 16 |
15
|
sselda |
|
| 17 |
11 13 16
|
elmaprd |
|
| 18 |
17
|
fdmd |
|
| 19 |
|
simplr |
|
| 20 |
5 6
|
symgbasf1o |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
f1ofo |
|
| 23 |
|
forn |
|
| 24 |
21 22 23
|
3syl |
|
| 25 |
18 24
|
eqtr4d |
|
| 26 |
|
rncoeq |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
sseq1d |
|
| 29 |
|
f1ocnv |
|
| 30 |
|
f1of1 |
|
| 31 |
21 29 30
|
3syl |
|
| 32 |
|
cnvimass |
|
| 33 |
32 17
|
fssdm |
|
| 34 |
31 33 11
|
hashimaf1 |
|
| 35 |
|
c0ex |
|
| 36 |
35
|
a1i |
|
| 37 |
|
simpr |
|
| 38 |
|
f1of |
|
| 39 |
37 20 38
|
3syl |
|
| 40 |
39
|
adantr |
|
| 41 |
17 40
|
fcod |
|
| 42 |
|
fsuppeq |
|
| 43 |
42
|
imp |
|
| 44 |
11 36 41 43
|
syl21anc |
|
| 45 |
|
cnvco |
|
| 46 |
45
|
imaeq1i |
|
| 47 |
|
imaco |
|
| 48 |
46 47
|
eqtri |
|
| 49 |
44 48
|
eqtrdi |
|
| 50 |
49
|
fveq2d |
|
| 51 |
|
fsuppeq |
|
| 52 |
51
|
imp |
|
| 53 |
11 36 17 52
|
syl21anc |
|
| 54 |
53
|
fveq2d |
|
| 55 |
34 50 54
|
3eqtr4d |
|
| 56 |
55
|
eqeq1d |
|
| 57 |
28 56
|
anbi12d |
|
| 58 |
57
|
ifbid |
|
| 59 |
3
|
ad2antrr |
|
| 60 |
4
|
ad2antrr |
|
| 61 |
|
simpr |
|
| 62 |
61 1
|
eleqtrdi |
|
| 63 |
5 6 11 19 62
|
mplvrpmlem |
|
| 64 |
63 1
|
eleqtrrdi |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
1 11 59 60 64 65 66
|
esplyfv |
Could not format ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) : No typesetting found for |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) with typecode |- |
| 68 |
1 11 59 60 61 65 66
|
esplyfv |
Could not format ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` x ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) : No typesetting found for |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` x ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) with typecode |- |
| 69 |
58 67 68
|
3eqtr4d |
Could not format ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = ( ( ( I eSymPoly R ) ` K ) ` x ) ) : No typesetting found for |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = ( ( ( I eSymPoly R ) ` K ) ` x ) ) with typecode |- |
| 70 |
5 6 7 1 2 3 10 69
|
issply |
Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) ) with typecode |- |