Metamath Proof Explorer


Theorem esplysply

Description: The K -th elementary symmetric polynomial is symmetric. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyfv.d
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 }
esplyfv.i
|- ( ph -> I e. Fin )
esplyfv.r
|- ( ph -> R e. Ring )
esplyfv.k
|- ( ph -> K e. ( 0 ... ( # ` I ) ) )
Assertion esplysply
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) )

Proof

Step Hyp Ref Expression
1 esplyfv.d
 |-  D = { h e. ( NN0 ^m I ) | h finSupp 0 }
2 esplyfv.i
 |-  ( ph -> I e. Fin )
3 esplyfv.r
 |-  ( ph -> R e. Ring )
4 esplyfv.k
 |-  ( ph -> K e. ( 0 ... ( # ` I ) ) )
5 eqid
 |-  ( SymGrp ` I ) = ( SymGrp ` I )
6 eqid
 |-  ( Base ` ( SymGrp ` I ) ) = ( Base ` ( SymGrp ` I ) )
7 eqid
 |-  ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) )
8 elfznn0
 |-  ( K e. ( 0 ... ( # ` I ) ) -> K e. NN0 )
9 4 8 syl
 |-  ( ph -> K e. NN0 )
10 1 2 3 9 7 esplympl
 |-  ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) )
11 2 ad2antrr
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> I e. Fin )
12 nn0ex
 |-  NN0 e. _V
13 12 a1i
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> NN0 e. _V )
14 1 ssrab3
 |-  D C_ ( NN0 ^m I )
15 14 a1i
 |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) -> D C_ ( NN0 ^m I ) )
16 15 sselda
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x e. ( NN0 ^m I ) )
17 11 13 16 elmaprd
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x : I --> NN0 )
18 17 fdmd
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> dom x = I )
19 simplr
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> p e. ( Base ` ( SymGrp ` I ) ) )
20 5 6 symgbasf1o
 |-  ( p e. ( Base ` ( SymGrp ` I ) ) -> p : I -1-1-onto-> I )
21 19 20 syl
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> p : I -1-1-onto-> I )
22 f1ofo
 |-  ( p : I -1-1-onto-> I -> p : I -onto-> I )
23 forn
 |-  ( p : I -onto-> I -> ran p = I )
24 21 22 23 3syl
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ran p = I )
25 18 24 eqtr4d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> dom x = ran p )
26 rncoeq
 |-  ( dom x = ran p -> ran ( x o. p ) = ran x )
27 25 26 syl
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ran ( x o. p ) = ran x )
28 27 sseq1d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ran ( x o. p ) C_ { 0 , 1 } <-> ran x C_ { 0 , 1 } ) )
29 f1ocnv
 |-  ( p : I -1-1-onto-> I -> `' p : I -1-1-onto-> I )
30 f1of1
 |-  ( `' p : I -1-1-onto-> I -> `' p : I -1-1-> I )
31 21 29 30 3syl
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> `' p : I -1-1-> I )
32 cnvimass
 |-  ( `' x " ( NN0 \ { 0 } ) ) C_ dom x
33 32 17 fssdm
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( `' x " ( NN0 \ { 0 } ) ) C_ I )
34 31 33 11 hashimaf1
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) ) = ( # ` ( `' x " ( NN0 \ { 0 } ) ) ) )
35 c0ex
 |-  0 e. _V
36 35 a1i
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> 0 e. _V )
37 simpr
 |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) -> p e. ( Base ` ( SymGrp ` I ) ) )
38 f1of
 |-  ( p : I -1-1-onto-> I -> p : I --> I )
39 37 20 38 3syl
 |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) -> p : I --> I )
40 39 adantr
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> p : I --> I )
41 17 40 fcod
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x o. p ) : I --> NN0 )
42 fsuppeq
 |-  ( ( I e. Fin /\ 0 e. _V ) -> ( ( x o. p ) : I --> NN0 -> ( ( x o. p ) supp 0 ) = ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) ) )
43 42 imp
 |-  ( ( ( I e. Fin /\ 0 e. _V ) /\ ( x o. p ) : I --> NN0 ) -> ( ( x o. p ) supp 0 ) = ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) )
44 11 36 41 43 syl21anc
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( x o. p ) supp 0 ) = ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) )
45 cnvco
 |-  `' ( x o. p ) = ( `' p o. `' x )
46 45 imaeq1i
 |-  ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) = ( ( `' p o. `' x ) " ( NN0 \ { 0 } ) )
47 imaco
 |-  ( ( `' p o. `' x ) " ( NN0 \ { 0 } ) ) = ( `' p " ( `' x " ( NN0 \ { 0 } ) ) )
48 46 47 eqtri
 |-  ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) = ( `' p " ( `' x " ( NN0 \ { 0 } ) ) )
49 44 48 eqtrdi
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( x o. p ) supp 0 ) = ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) )
50 49 fveq2d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( ( x o. p ) supp 0 ) ) = ( # ` ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) ) )
51 fsuppeq
 |-  ( ( I e. Fin /\ 0 e. _V ) -> ( x : I --> NN0 -> ( x supp 0 ) = ( `' x " ( NN0 \ { 0 } ) ) ) )
52 51 imp
 |-  ( ( ( I e. Fin /\ 0 e. _V ) /\ x : I --> NN0 ) -> ( x supp 0 ) = ( `' x " ( NN0 \ { 0 } ) ) )
53 11 36 17 52 syl21anc
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x supp 0 ) = ( `' x " ( NN0 \ { 0 } ) ) )
54 53 fveq2d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( x supp 0 ) ) = ( # ` ( `' x " ( NN0 \ { 0 } ) ) ) )
55 34 50 54 3eqtr4d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( ( x o. p ) supp 0 ) ) = ( # ` ( x supp 0 ) ) )
56 55 eqeq1d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( # ` ( ( x o. p ) supp 0 ) ) = K <-> ( # ` ( x supp 0 ) ) = K ) )
57 28 56 anbi12d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) <-> ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) ) )
58 57 ifbid
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) )
59 3 ad2antrr
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> R e. Ring )
60 4 ad2antrr
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> K e. ( 0 ... ( # ` I ) ) )
61 simpr
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x e. D )
62 61 1 eleqtrdi
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x e. { h e. ( NN0 ^m I ) | h finSupp 0 } )
63 5 6 11 19 62 mplvrpmlem
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x o. p ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } )
64 63 1 eleqtrrdi
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x o. p ) e. D )
65 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
66 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
67 1 11 59 60 64 65 66 esplyfv
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) )
68 1 11 59 60 61 65 66 esplyfv
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` x ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) )
69 58 67 68 3eqtr4d
 |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = ( ( ( I eSymPoly R ) ` K ) ` x ) )
70 5 6 7 1 2 3 10 69 issply
 |-  ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) )