| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfv.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplyfv.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplyfv.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
esplyfv.k |
|- ( ph -> K e. ( 0 ... ( # ` I ) ) ) |
| 5 |
|
eqid |
|- ( SymGrp ` I ) = ( SymGrp ` I ) |
| 6 |
|
eqid |
|- ( Base ` ( SymGrp ` I ) ) = ( Base ` ( SymGrp ` I ) ) |
| 7 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
| 8 |
|
elfznn0 |
|- ( K e. ( 0 ... ( # ` I ) ) -> K e. NN0 ) |
| 9 |
4 8
|
syl |
|- ( ph -> K e. NN0 ) |
| 10 |
1 2 3 9 7
|
esplympl |
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) |
| 11 |
2
|
ad2antrr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> I e. Fin ) |
| 12 |
|
nn0ex |
|- NN0 e. _V |
| 13 |
12
|
a1i |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> NN0 e. _V ) |
| 14 |
1
|
ssrab3 |
|- D C_ ( NN0 ^m I ) |
| 15 |
14
|
a1i |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) -> D C_ ( NN0 ^m I ) ) |
| 16 |
15
|
sselda |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x e. ( NN0 ^m I ) ) |
| 17 |
11 13 16
|
elmaprd |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x : I --> NN0 ) |
| 18 |
17
|
fdmd |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> dom x = I ) |
| 19 |
|
simplr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> p e. ( Base ` ( SymGrp ` I ) ) ) |
| 20 |
5 6
|
symgbasf1o |
|- ( p e. ( Base ` ( SymGrp ` I ) ) -> p : I -1-1-onto-> I ) |
| 21 |
19 20
|
syl |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> p : I -1-1-onto-> I ) |
| 22 |
|
f1ofo |
|- ( p : I -1-1-onto-> I -> p : I -onto-> I ) |
| 23 |
|
forn |
|- ( p : I -onto-> I -> ran p = I ) |
| 24 |
21 22 23
|
3syl |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ran p = I ) |
| 25 |
18 24
|
eqtr4d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> dom x = ran p ) |
| 26 |
|
rncoeq |
|- ( dom x = ran p -> ran ( x o. p ) = ran x ) |
| 27 |
25 26
|
syl |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ran ( x o. p ) = ran x ) |
| 28 |
27
|
sseq1d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ran ( x o. p ) C_ { 0 , 1 } <-> ran x C_ { 0 , 1 } ) ) |
| 29 |
|
f1ocnv |
|- ( p : I -1-1-onto-> I -> `' p : I -1-1-onto-> I ) |
| 30 |
|
f1of1 |
|- ( `' p : I -1-1-onto-> I -> `' p : I -1-1-> I ) |
| 31 |
21 29 30
|
3syl |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> `' p : I -1-1-> I ) |
| 32 |
|
cnvimass |
|- ( `' x " ( NN0 \ { 0 } ) ) C_ dom x |
| 33 |
32 17
|
fssdm |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( `' x " ( NN0 \ { 0 } ) ) C_ I ) |
| 34 |
31 33 11
|
hashimaf1 |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) ) = ( # ` ( `' x " ( NN0 \ { 0 } ) ) ) ) |
| 35 |
|
c0ex |
|- 0 e. _V |
| 36 |
35
|
a1i |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> 0 e. _V ) |
| 37 |
|
simpr |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) -> p e. ( Base ` ( SymGrp ` I ) ) ) |
| 38 |
|
f1of |
|- ( p : I -1-1-onto-> I -> p : I --> I ) |
| 39 |
37 20 38
|
3syl |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) -> p : I --> I ) |
| 40 |
39
|
adantr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> p : I --> I ) |
| 41 |
17 40
|
fcod |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x o. p ) : I --> NN0 ) |
| 42 |
|
fsuppeq |
|- ( ( I e. Fin /\ 0 e. _V ) -> ( ( x o. p ) : I --> NN0 -> ( ( x o. p ) supp 0 ) = ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) ) ) |
| 43 |
42
|
imp |
|- ( ( ( I e. Fin /\ 0 e. _V ) /\ ( x o. p ) : I --> NN0 ) -> ( ( x o. p ) supp 0 ) = ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) ) |
| 44 |
11 36 41 43
|
syl21anc |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( x o. p ) supp 0 ) = ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) ) |
| 45 |
|
cnvco |
|- `' ( x o. p ) = ( `' p o. `' x ) |
| 46 |
45
|
imaeq1i |
|- ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) = ( ( `' p o. `' x ) " ( NN0 \ { 0 } ) ) |
| 47 |
|
imaco |
|- ( ( `' p o. `' x ) " ( NN0 \ { 0 } ) ) = ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) |
| 48 |
46 47
|
eqtri |
|- ( `' ( x o. p ) " ( NN0 \ { 0 } ) ) = ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) |
| 49 |
44 48
|
eqtrdi |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( x o. p ) supp 0 ) = ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) ) |
| 50 |
49
|
fveq2d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( ( x o. p ) supp 0 ) ) = ( # ` ( `' p " ( `' x " ( NN0 \ { 0 } ) ) ) ) ) |
| 51 |
|
fsuppeq |
|- ( ( I e. Fin /\ 0 e. _V ) -> ( x : I --> NN0 -> ( x supp 0 ) = ( `' x " ( NN0 \ { 0 } ) ) ) ) |
| 52 |
51
|
imp |
|- ( ( ( I e. Fin /\ 0 e. _V ) /\ x : I --> NN0 ) -> ( x supp 0 ) = ( `' x " ( NN0 \ { 0 } ) ) ) |
| 53 |
11 36 17 52
|
syl21anc |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x supp 0 ) = ( `' x " ( NN0 \ { 0 } ) ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( x supp 0 ) ) = ( # ` ( `' x " ( NN0 \ { 0 } ) ) ) ) |
| 55 |
34 50 54
|
3eqtr4d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( # ` ( ( x o. p ) supp 0 ) ) = ( # ` ( x supp 0 ) ) ) |
| 56 |
55
|
eqeq1d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( # ` ( ( x o. p ) supp 0 ) ) = K <-> ( # ` ( x supp 0 ) ) = K ) ) |
| 57 |
28 56
|
anbi12d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) <-> ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) ) ) |
| 58 |
57
|
ifbid |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 59 |
3
|
ad2antrr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> R e. Ring ) |
| 60 |
4
|
ad2antrr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> K e. ( 0 ... ( # ` I ) ) ) |
| 61 |
|
simpr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x e. D ) |
| 62 |
61 1
|
eleqtrdi |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> x e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 63 |
5 6 11 19 62
|
mplvrpmlem |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x o. p ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 64 |
63 1
|
eleqtrrdi |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( x o. p ) e. D ) |
| 65 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 66 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 67 |
1 11 59 60 64 65 66
|
esplyfv |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = if ( ( ran ( x o. p ) C_ { 0 , 1 } /\ ( # ` ( ( x o. p ) supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 68 |
1 11 59 60 61 65 66
|
esplyfv |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` x ) = if ( ( ran x C_ { 0 , 1 } /\ ( # ` ( x supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 69 |
58 67 68
|
3eqtr4d |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` I ) ) ) /\ x e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` ( x o. p ) ) = ( ( ( I eSymPoly R ) ` K ) ` x ) ) |
| 70 |
5 6 7 1 2 3 10 69
|
issply |
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( I SymPoly R ) ) |