| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashimaf1.1 |
|- ( ph -> F : A -1-1-> B ) |
| 2 |
|
hashimaf1.2 |
|- ( ph -> C C_ A ) |
| 3 |
|
hashimaf1.3 |
|- ( ph -> A e. V ) |
| 4 |
3 2
|
sselpwd |
|- ( ph -> C e. ~P A ) |
| 5 |
|
f1ores |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
| 6 |
1 2 5
|
syl2anc |
|- ( ph -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
| 7 |
|
f1oeng |
|- ( ( C e. ~P A /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> C ~~ ( F " C ) ) |
| 8 |
4 6 7
|
syl2anc |
|- ( ph -> C ~~ ( F " C ) ) |
| 9 |
8
|
ensymd |
|- ( ph -> ( F " C ) ~~ C ) |
| 10 |
|
hasheni |
|- ( ( F " C ) ~~ C -> ( # ` ( F " C ) ) = ( # ` C ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> ( # ` ( F " C ) ) = ( # ` C ) ) |