Metamath Proof Explorer


Theorem hashimaf1

Description: Taking the image of a set by a one-to-one function does not affect size. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses hashimaf1.1 φ F : A 1-1 B
hashimaf1.2 φ C A
hashimaf1.3 φ A V
Assertion hashimaf1 φ F C = C

Proof

Step Hyp Ref Expression
1 hashimaf1.1 φ F : A 1-1 B
2 hashimaf1.2 φ C A
3 hashimaf1.3 φ A V
4 3 2 sselpwd φ C 𝒫 A
5 f1ores F : A 1-1 B C A F C : C 1-1 onto F C
6 1 2 5 syl2anc φ F C : C 1-1 onto F C
7 f1oeng C 𝒫 A F C : C 1-1 onto F C C F C
8 4 6 7 syl2anc φ C F C
9 8 ensymd φ F C C
10 hasheni F C C F C = C
11 9 10 syl φ F C = C