Metamath Proof Explorer


Theorem hashimaf1

Description: Taking the image of a set by a one-to-one function does not affect size. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses hashimaf1.1 ( 𝜑𝐹 : 𝐴1-1𝐵 )
hashimaf1.2 ( 𝜑𝐶𝐴 )
hashimaf1.3 ( 𝜑𝐴𝑉 )
Assertion hashimaf1 ( 𝜑 → ( ♯ ‘ ( 𝐹𝐶 ) ) = ( ♯ ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hashimaf1.1 ( 𝜑𝐹 : 𝐴1-1𝐵 )
2 hashimaf1.2 ( 𝜑𝐶𝐴 )
3 hashimaf1.3 ( 𝜑𝐴𝑉 )
4 3 2 sselpwd ( 𝜑𝐶 ∈ 𝒫 𝐴 )
5 f1ores ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) )
7 f1oeng ( ( 𝐶 ∈ 𝒫 𝐴 ∧ ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) ) → 𝐶 ≈ ( 𝐹𝐶 ) )
8 4 6 7 syl2anc ( 𝜑𝐶 ≈ ( 𝐹𝐶 ) )
9 8 ensymd ( 𝜑 → ( 𝐹𝐶 ) ≈ 𝐶 )
10 hasheni ( ( 𝐹𝐶 ) ≈ 𝐶 → ( ♯ ‘ ( 𝐹𝐶 ) ) = ( ♯ ‘ 𝐶 ) )
11 9 10 syl ( 𝜑 → ( ♯ ‘ ( 𝐹𝐶 ) ) = ( ♯ ‘ 𝐶 ) )