| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashimaf1.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 2 |
|
hashimaf1.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 3 |
|
hashimaf1.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
3 2
|
sselpwd |
⊢ ( 𝜑 → 𝐶 ∈ 𝒫 𝐴 ) |
| 5 |
|
f1ores |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
| 6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
| 7 |
|
f1oeng |
⊢ ( ( 𝐶 ∈ 𝒫 𝐴 ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) → 𝐶 ≈ ( 𝐹 “ 𝐶 ) ) |
| 8 |
4 6 7
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ≈ ( 𝐹 “ 𝐶 ) ) |
| 9 |
8
|
ensymd |
⊢ ( 𝜑 → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |
| 10 |
|
hasheni |
⊢ ( ( 𝐹 “ 𝐶 ) ≈ 𝐶 → ( ♯ ‘ ( 𝐹 “ 𝐶 ) ) = ( ♯ ‘ 𝐶 ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 “ 𝐶 ) ) = ( ♯ ‘ 𝐶 ) ) |