| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfval3.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplyfval3.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplyfval3.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
esplyfval3.k |
|- ( ph -> K e. NN0 ) |
| 5 |
|
esplyfval3.1 |
|- .0. = ( 0g ` R ) |
| 6 |
|
esplyfval3.2 |
|- .1. = ( 1r ` R ) |
| 7 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 8 |
7
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 9 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
9 10
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 12 |
3 8 11
|
3syl |
|- ( ph -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 13 |
12
|
ffnd |
|- ( ph -> ( ZRHom ` R ) Fn ZZ ) |
| 14 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 15 |
1 14
|
rabex2 |
|- D e. _V |
| 16 |
15
|
a1i |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> D e. _V ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> I e. Fin ) |
| 18 |
3
|
adantr |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> R e. Ring ) |
| 19 |
4
|
adantr |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> K e. NN0 ) |
| 20 |
1 17 18 19
|
esplylem |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) |
| 21 |
|
indf |
|- ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 22 |
16 20 21
|
syl2anc |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 23 |
|
0zd |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> 0 e. ZZ ) |
| 24 |
|
1zzd |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> 1 e. ZZ ) |
| 25 |
23 24
|
prssd |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> { 0 , 1 } C_ ZZ ) |
| 26 |
22 25
|
fssd |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> ZZ ) |
| 27 |
|
fnfco |
|- ( ( ( ZRHom ` R ) Fn ZZ /\ ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> ZZ ) -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) Fn D ) |
| 28 |
13 26 27
|
syl2an2r |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) Fn D ) |
| 29 |
1 17 18 19
|
esplyfval |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 30 |
29
|
fneq1d |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( ( I eSymPoly R ) ` K ) Fn D <-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) Fn D ) ) |
| 31 |
28 30
|
mpbird |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) Fn D ) |
| 32 |
|
dffn5 |
|- ( ( ( I eSymPoly R ) ` K ) Fn D <-> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) ) |
| 33 |
31 32
|
sylib |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) ) |
| 34 |
|
eqeq2 |
|- ( if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) <-> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) |
| 35 |
|
eqeq2 |
|- ( .0. = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` f ) = .0. <-> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) |
| 36 |
17
|
adantr |
|- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> I e. Fin ) |
| 37 |
36
|
adantr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> I e. Fin ) |
| 38 |
18
|
ad2antrr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> R e. Ring ) |
| 39 |
|
simpllr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> K e. ( 0 ... ( # ` I ) ) ) |
| 40 |
|
simplr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> f e. D ) |
| 41 |
|
simpr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> ran f C_ { 0 , 1 } ) |
| 42 |
1 37 38 39 40 5 6 41
|
esplyfv1 |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) ) |
| 43 |
29
|
ad2antrr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 44 |
43
|
fveq1d |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` f ) ) |
| 45 |
26
|
ad2antrr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> ZZ ) |
| 46 |
|
simplr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> f e. D ) |
| 47 |
45 46
|
fvco3d |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` f ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` f ) ) ) |
| 48 |
20
|
ad2antrr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) |
| 49 |
|
simpr |
|- ( ( ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = f ) -> ( ( _Ind ` I ) ` d ) = f ) |
| 50 |
36
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = f ) -> I e. Fin ) |
| 51 |
|
ssrab2 |
|- { c e. ~P I | ( # ` c ) = K } C_ ~P I |
| 52 |
51
|
a1i |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) |
| 53 |
52
|
sselda |
|- ( ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> d e. ~P I ) |
| 54 |
53
|
adantr |
|- ( ( ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = f ) -> d e. ~P I ) |
| 55 |
54
|
elpwid |
|- ( ( ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = f ) -> d C_ I ) |
| 56 |
|
indf |
|- ( ( I e. Fin /\ d C_ I ) -> ( ( _Ind ` I ) ` d ) : I --> { 0 , 1 } ) |
| 57 |
50 55 56
|
syl2anc |
|- ( ( ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = f ) -> ( ( _Ind ` I ) ` d ) : I --> { 0 , 1 } ) |
| 58 |
49 57
|
feq1dd |
|- ( ( ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) /\ d e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` d ) = f ) -> f : I --> { 0 , 1 } ) |
| 59 |
|
indf1o |
|- ( I e. Fin -> ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) ) |
| 60 |
|
f1of |
|- ( ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 61 |
36 59 60
|
3syl |
|- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 62 |
61
|
ffnd |
|- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( _Ind ` I ) Fn ~P I ) |
| 63 |
51
|
a1i |
|- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) |
| 64 |
62 63
|
fvelimabd |
|- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) <-> E. d e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` d ) = f ) ) |
| 65 |
64
|
biimpa |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) -> E. d e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` d ) = f ) |
| 66 |
58 65
|
r19.29a |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) -> f : I --> { 0 , 1 } ) |
| 67 |
66
|
frnd |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) -> ran f C_ { 0 , 1 } ) |
| 68 |
67
|
stoic1a |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> -. f e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) |
| 69 |
46 68
|
eldifd |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> f e. ( D \ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) |
| 70 |
|
ind0 |
|- ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D /\ f e. ( D \ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` f ) = 0 ) |
| 71 |
15 48 69 70
|
mp3an2i |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` f ) = 0 ) |
| 72 |
71
|
fveq2d |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` f ) ) = ( ( ZRHom ` R ) ` 0 ) ) |
| 73 |
7 5
|
zrh0 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 0 ) = .0. ) |
| 74 |
3 73
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 0 ) = .0. ) |
| 75 |
74
|
ad3antrrr |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ZRHom ` R ) ` 0 ) = .0. ) |
| 76 |
72 75
|
eqtrd |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` f ) ) = .0. ) |
| 77 |
44 47 76
|
3eqtrd |
|- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = .0. ) |
| 78 |
34 35 42 77
|
ifbothda |
|- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) |
| 79 |
|
ifan |
|- if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) |
| 80 |
78 79
|
eqtr4di |
|- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) |
| 81 |
80
|
mpteq2dva |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) |
| 82 |
33 81
|
eqtrd |
|- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) |
| 83 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 84 |
1
|
psrbasfsupp |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 85 |
|
eqid |
|- ( 0g ` ( I mPoly R ) ) = ( 0g ` ( I mPoly R ) ) |
| 86 |
3
|
ringgrpd |
|- ( ph -> R e. Grp ) |
| 87 |
83 84 5 85 2 86
|
mpl0 |
|- ( ph -> ( 0g ` ( I mPoly R ) ) = ( D X. { .0. } ) ) |
| 88 |
87
|
adantr |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( 0g ` ( I mPoly R ) ) = ( D X. { .0. } ) ) |
| 89 |
2
|
adantr |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> I e. Fin ) |
| 90 |
3
|
adantr |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> R e. Ring ) |
| 91 |
4
|
adantr |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> K e. NN0 ) |
| 92 |
|
simpr |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> -. K e. ( 0 ... ( # ` I ) ) ) |
| 93 |
91 92
|
eldifd |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> K e. ( NN0 \ ( 0 ... ( # ` I ) ) ) ) |
| 94 |
1 89 90 93 85
|
esplyfval2 |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( 0g ` ( I mPoly R ) ) ) |
| 95 |
|
breq1 |
|- ( h = f -> ( h finSupp 0 <-> f finSupp 0 ) ) |
| 96 |
1
|
eleq2i |
|- ( f e. D <-> f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 97 |
96
|
biimpi |
|- ( f e. D -> f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 98 |
97
|
adantl |
|- ( ( ph /\ f e. D ) -> f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 99 |
95 98
|
elrabrd |
|- ( ( ph /\ f e. D ) -> f finSupp 0 ) |
| 100 |
99
|
fsuppimpd |
|- ( ( ph /\ f e. D ) -> ( f supp 0 ) e. Fin ) |
| 101 |
|
hashcl |
|- ( ( f supp 0 ) e. Fin -> ( # ` ( f supp 0 ) ) e. NN0 ) |
| 102 |
100 101
|
syl |
|- ( ( ph /\ f e. D ) -> ( # ` ( f supp 0 ) ) e. NN0 ) |
| 103 |
102
|
nn0red |
|- ( ( ph /\ f e. D ) -> ( # ` ( f supp 0 ) ) e. RR ) |
| 104 |
103
|
adantlr |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( # ` ( f supp 0 ) ) e. RR ) |
| 105 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
| 106 |
2 105
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 107 |
106
|
nn0red |
|- ( ph -> ( # ` I ) e. RR ) |
| 108 |
107
|
ad2antrr |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( # ` I ) e. RR ) |
| 109 |
4
|
nn0red |
|- ( ph -> K e. RR ) |
| 110 |
109
|
ad2antrr |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> K e. RR ) |
| 111 |
|
suppssdm |
|- ( f supp 0 ) C_ dom f |
| 112 |
2
|
adantr |
|- ( ( ph /\ f e. D ) -> I e. Fin ) |
| 113 |
|
nn0ex |
|- NN0 e. _V |
| 114 |
113
|
a1i |
|- ( ( ph /\ f e. D ) -> NN0 e. _V ) |
| 115 |
1
|
ssrab3 |
|- D C_ ( NN0 ^m I ) |
| 116 |
115
|
a1i |
|- ( ph -> D C_ ( NN0 ^m I ) ) |
| 117 |
116
|
sselda |
|- ( ( ph /\ f e. D ) -> f e. ( NN0 ^m I ) ) |
| 118 |
112 114 117
|
elmaprd |
|- ( ( ph /\ f e. D ) -> f : I --> NN0 ) |
| 119 |
111 118
|
fssdm |
|- ( ( ph /\ f e. D ) -> ( f supp 0 ) C_ I ) |
| 120 |
|
hashss |
|- ( ( I e. Fin /\ ( f supp 0 ) C_ I ) -> ( # ` ( f supp 0 ) ) <_ ( # ` I ) ) |
| 121 |
2 119 120
|
syl2an2r |
|- ( ( ph /\ f e. D ) -> ( # ` ( f supp 0 ) ) <_ ( # ` I ) ) |
| 122 |
121
|
adantlr |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( # ` ( f supp 0 ) ) <_ ( # ` I ) ) |
| 123 |
106
|
nn0zd |
|- ( ph -> ( # ` I ) e. ZZ ) |
| 124 |
123
|
ad2antrr |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( # ` I ) e. ZZ ) |
| 125 |
|
nn0diffz0 |
|- ( ( # ` I ) e. NN0 -> ( NN0 \ ( 0 ... ( # ` I ) ) ) = ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) |
| 126 |
89 105 125
|
3syl |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( NN0 \ ( 0 ... ( # ` I ) ) ) = ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) |
| 127 |
93 126
|
eleqtrd |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> K e. ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) |
| 128 |
127
|
adantr |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> K e. ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) |
| 129 |
|
eluzp1l |
|- ( ( ( # ` I ) e. ZZ /\ K e. ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) -> ( # ` I ) < K ) |
| 130 |
124 128 129
|
syl2anc |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( # ` I ) < K ) |
| 131 |
104 108 110 122 130
|
lelttrd |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( # ` ( f supp 0 ) ) < K ) |
| 132 |
104 131
|
ltned |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( # ` ( f supp 0 ) ) =/= K ) |
| 133 |
132
|
neneqd |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> -. ( # ` ( f supp 0 ) ) = K ) |
| 134 |
133
|
intnand |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> -. ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) ) |
| 135 |
134
|
iffalsed |
|- ( ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) = .0. ) |
| 136 |
135
|
mpteq2dva |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) = ( f e. D |-> .0. ) ) |
| 137 |
|
fconstmpt |
|- ( D X. { .0. } ) = ( f e. D |-> .0. ) |
| 138 |
136 137
|
eqtr4di |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) = ( D X. { .0. } ) ) |
| 139 |
88 94 138
|
3eqtr4d |
|- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) |
| 140 |
82 139
|
pm2.61dan |
|- ( ph -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) |