| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfval3.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplyfval3.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplyfval3.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplyfval3.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 5 |
|
esplyfval3.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
esplyfval3.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 8 |
7
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 9 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
9 10
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 12 |
3 8 11
|
3syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 13 |
12
|
ffnd |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) |
| 14 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 15 |
1 14
|
rabex2 |
⊢ 𝐷 ∈ V |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝐷 ∈ V ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝐼 ∈ Fin ) |
| 18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝑅 ∈ Ring ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 20 |
1 17 18 19
|
esplylem |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) |
| 21 |
|
indf |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 22 |
16 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 23 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 0 ∈ ℤ ) |
| 24 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 1 ∈ ℤ ) |
| 25 |
23 24
|
prssd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → { 0 , 1 } ⊆ ℤ ) |
| 26 |
22 25
|
fssd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ ℤ ) |
| 27 |
|
fnfco |
⊢ ( ( ( ℤRHom ‘ 𝑅 ) Fn ℤ ∧ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ ℤ ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) Fn 𝐷 ) |
| 28 |
13 26 27
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) Fn 𝐷 ) |
| 29 |
1 17 18 19
|
esplyfval |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 30 |
29
|
fneq1d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) Fn 𝐷 ↔ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) Fn 𝐷 ) ) |
| 31 |
28 30
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) Fn 𝐷 ) |
| 32 |
|
dffn5 |
⊢ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) Fn 𝐷 ↔ ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑓 ∈ 𝐷 ↦ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) ) ) |
| 33 |
31 32
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑓 ∈ 𝐷 ↦ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) ) ) |
| 34 |
|
eqeq2 |
⊢ ( if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) = if ( ran 𝑓 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) → ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) ↔ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = if ( ran 𝑓 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) ) ) |
| 35 |
|
eqeq2 |
⊢ ( 0 = if ( ran 𝑓 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) → ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = 0 ↔ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = if ( ran 𝑓 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) ) ) |
| 36 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → 𝐼 ∈ Fin ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝐼 ∈ Fin ) |
| 38 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑅 ∈ Ring ) |
| 39 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) |
| 40 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑓 ∈ 𝐷 ) |
| 41 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑓 ⊆ { 0 , 1 } ) |
| 42 |
1 37 38 39 40 5 6 41
|
esplyfv1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) ) |
| 43 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 44 |
43
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝑓 ) ) |
| 45 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ ℤ ) |
| 46 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑓 ∈ 𝐷 ) |
| 47 |
45 46
|
fvco3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝑓 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑓 ) ) ) |
| 48 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) |
| 49 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) |
| 50 |
36
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) → 𝐼 ∈ Fin ) |
| 51 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 |
| 52 |
51
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 53 |
52
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ 𝒫 𝐼 ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) → 𝑑 ∈ 𝒫 𝐼 ) |
| 55 |
54
|
elpwid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) → 𝑑 ⊆ 𝐼 ) |
| 56 |
|
indf |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 57 |
50 55 56
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 58 |
49 57
|
feq1dd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) → 𝑓 : 𝐼 ⟶ { 0 , 1 } ) |
| 59 |
|
indf1o |
⊢ ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 60 |
|
f1of |
⊢ ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 61 |
36 59 60
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 62 |
61
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( 𝟭 ‘ 𝐼 ) Fn 𝒫 𝐼 ) |
| 63 |
51
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 64 |
62 63
|
fvelimabd |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ↔ ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) ) |
| 65 |
64
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ∃ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) = 𝑓 ) |
| 66 |
58 65
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → 𝑓 : 𝐼 ⟶ { 0 , 1 } ) |
| 67 |
66
|
frnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ran 𝑓 ⊆ { 0 , 1 } ) |
| 68 |
67
|
stoic1a |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ 𝑓 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 69 |
46 68
|
eldifd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑓 ∈ ( 𝐷 ∖ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) |
| 70 |
|
ind0 |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ∧ 𝑓 ∈ ( 𝐷 ∖ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑓 ) = 0 ) |
| 71 |
15 48 69 70
|
mp3an2i |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑓 ) = 0 ) |
| 72 |
71
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑓 ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) |
| 73 |
7 5
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 74 |
3 73
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 75 |
74
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 76 |
72 75
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑓 ) ) = 0 ) |
| 77 |
44 47 76
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = 0 ) |
| 78 |
34 35 42 77
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = if ( ran 𝑓 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) ) |
| 79 |
|
ifan |
⊢ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) = if ( ran 𝑓 ⊆ { 0 , 1 } , if ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 , 1 , 0 ) , 0 ) |
| 80 |
78 79
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) |
| 81 |
80
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( 𝑓 ∈ 𝐷 ↦ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑓 ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) ) |
| 82 |
33 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) ) |
| 83 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 84 |
1
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 85 |
|
eqid |
⊢ ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) = ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 86 |
3
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 87 |
83 84 5 85 2 86
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) = ( 𝐷 × { 0 } ) ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) = ( 𝐷 × { 0 } ) ) |
| 89 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝐼 ∈ Fin ) |
| 90 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝑅 ∈ Ring ) |
| 91 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 92 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) |
| 93 |
91 92
|
eldifd |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝐾 ∈ ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ) |
| 94 |
1 89 90 93 85
|
esplyfval2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 95 |
|
breq1 |
⊢ ( ℎ = 𝑓 → ( ℎ finSupp 0 ↔ 𝑓 finSupp 0 ) ) |
| 96 |
1
|
eleq2i |
⊢ ( 𝑓 ∈ 𝐷 ↔ 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 97 |
96
|
biimpi |
⊢ ( 𝑓 ∈ 𝐷 → 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 98 |
97
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 99 |
95 98
|
elrabrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 finSupp 0 ) |
| 100 |
99
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 supp 0 ) ∈ Fin ) |
| 101 |
|
hashcl |
⊢ ( ( 𝑓 supp 0 ) ∈ Fin → ( ♯ ‘ ( 𝑓 supp 0 ) ) ∈ ℕ0 ) |
| 102 |
100 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) ∈ ℕ0 ) |
| 103 |
102
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) ∈ ℝ ) |
| 104 |
103
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) ∈ ℝ ) |
| 105 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 106 |
2 105
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 107 |
106
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 108 |
107
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 109 |
4
|
nn0red |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 110 |
109
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → 𝐾 ∈ ℝ ) |
| 111 |
|
suppssdm |
⊢ ( 𝑓 supp 0 ) ⊆ dom 𝑓 |
| 112 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝐼 ∈ Fin ) |
| 113 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 114 |
113
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ℕ0 ∈ V ) |
| 115 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) |
| 116 |
115
|
a1i |
⊢ ( 𝜑 → 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 117 |
116
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 118 |
112 114 117
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 : 𝐼 ⟶ ℕ0 ) |
| 119 |
111 118
|
fssdm |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 supp 0 ) ⊆ 𝐼 ) |
| 120 |
|
hashss |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑓 supp 0 ) ⊆ 𝐼 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) ≤ ( ♯ ‘ 𝐼 ) ) |
| 121 |
2 119 120
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) ≤ ( ♯ ‘ 𝐼 ) ) |
| 122 |
121
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) ≤ ( ♯ ‘ 𝐼 ) ) |
| 123 |
106
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 124 |
123
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 125 |
|
nn0diffz0 |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) = ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) |
| 126 |
89 105 125
|
3syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) = ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) |
| 127 |
93 126
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) |
| 128 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → 𝐾 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) |
| 129 |
|
eluzp1l |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) → ( ♯ ‘ 𝐼 ) < 𝐾 ) |
| 130 |
124 128 129
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ 𝐼 ) < 𝐾 ) |
| 131 |
104 108 110 122 130
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) < 𝐾 ) |
| 132 |
104 131
|
ltned |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) ≠ 𝐾 ) |
| 133 |
132
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ¬ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) |
| 134 |
133
|
intnand |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → ¬ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) |
| 135 |
134
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝐷 ) → if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) = 0 ) |
| 136 |
135
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) = ( 𝑓 ∈ 𝐷 ↦ 0 ) ) |
| 137 |
|
fconstmpt |
⊢ ( 𝐷 × { 0 } ) = ( 𝑓 ∈ 𝐷 ↦ 0 ) |
| 138 |
136 137
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) = ( 𝐷 × { 0 } ) ) |
| 139 |
88 94 138
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) ) |
| 140 |
82 139
|
pm2.61dan |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , 1 , 0 ) ) ) |