Metamath Proof Explorer


Theorem esplylem

Description: Lemma for esplyfv and others. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplympl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
esplympl.i ( 𝜑𝐼 ∈ Fin )
esplympl.r ( 𝜑𝑅 ∈ Ring )
esplympl.k ( 𝜑𝐾 ∈ ℕ0 )
Assertion esplylem ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 )

Proof

Step Hyp Ref Expression
1 esplympl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
2 esplympl.i ( 𝜑𝐼 ∈ Fin )
3 esplympl.r ( 𝜑𝑅 ∈ Ring )
4 esplympl.k ( 𝜑𝐾 ∈ ℕ0 )
5 nfv 𝑑 𝜑
6 indf1o ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) )
7 f1of ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
8 2 6 7 3syl ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
9 8 ffund ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) )
10 breq1 ( = ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) → ( finSupp 0 ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 ) )
11 nn0ex 0 ∈ V
12 11 a1i ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ℕ0 ∈ V )
13 2 adantr ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝐼 ∈ Fin )
14 ssrab2 { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼
15 14 a1i ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 )
16 15 sselda ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ 𝒫 𝐼 )
17 16 elpwid ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑𝐼 )
18 indf ( ( 𝐼 ∈ Fin ∧ 𝑑𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } )
19 13 17 18 syl2anc ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } )
20 0nn0 0 ∈ ℕ0
21 20 a1i ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 0 ∈ ℕ0 )
22 1nn0 1 ∈ ℕ0
23 22 a1i ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 1 ∈ ℕ0 )
24 21 23 prssd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → { 0 , 1 } ⊆ ℕ0 )
25 19 24 fssd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ ℕ0 )
26 12 13 25 elmapdd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ ( ℕ0m 𝐼 ) )
27 19 13 21 fidmfisupp ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 )
28 10 26 27 elrabd ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
29 28 1 eleqtrrdi ( ( 𝜑𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ 𝐷 )
30 5 9 29 funimassd ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 )