| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplympl.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplympl.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplympl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplympl.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑑 𝜑 |
| 6 |
|
indf1o |
⊢ ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 7 |
|
f1of |
⊢ ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 8 |
2 6 7
|
3syl |
⊢ ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 9 |
8
|
ffund |
⊢ ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) ) |
| 10 |
|
breq1 |
⊢ ( ℎ = ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) → ( ℎ finSupp 0 ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 ) ) |
| 11 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ℕ0 ∈ V ) |
| 13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝐼 ∈ Fin ) |
| 14 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ∈ 𝒫 𝐼 ) |
| 17 |
16
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑑 ⊆ 𝐼 ) |
| 18 |
|
indf |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 19 |
13 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 20 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 0 ∈ ℕ0 ) |
| 22 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 1 ∈ ℕ0 ) |
| 24 |
21 23
|
prssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → { 0 , 1 } ⊆ ℕ0 ) |
| 25 |
19 24
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) : 𝐼 ⟶ ℕ0 ) |
| 26 |
12 13 25
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 27 |
19 13 21
|
fidmfisupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) finSupp 0 ) |
| 28 |
10 26 27
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 29 |
28 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑑 ) ∈ 𝐷 ) |
| 30 |
5 9 29
|
funimassd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) |