Metamath Proof Explorer


Theorem esplympl

Description: Elementary symmetric polynomials are polynomials. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplympl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
esplympl.i ( 𝜑𝐼 ∈ Fin )
esplympl.r ( 𝜑𝑅 ∈ Ring )
esplympl.k ( 𝜑𝐾 ∈ ℕ0 )
esplympl.1 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
Assertion esplympl ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ 𝑀 )

Proof

Step Hyp Ref Expression
1 esplympl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
2 esplympl.i ( 𝜑𝐼 ∈ Fin )
3 esplympl.r ( 𝜑𝑅 ∈ Ring )
4 esplympl.k ( 𝜑𝐾 ∈ ℕ0 )
5 esplympl.1 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
6 fvexd ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V )
7 ovex ( ℕ0m 𝐼 ) ∈ V
8 1 7 rabex2 𝐷 ∈ V
9 8 a1i ( 𝜑𝐷 ∈ V )
10 1 2 3 4 esplyfval ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) )
11 10 eqcomd ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) = ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) )
12 eqid ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 )
13 12 zrhrhm ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) )
14 zringbas ℤ = ( Base ‘ ℤring )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 14 15 rhmf ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) )
17 3 13 16 3syl ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) )
18 1 2 3 4 esplylem ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 )
19 indf ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } )
20 9 18 19 syl2anc ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } )
21 0zd ( 𝜑 → 0 ∈ ℤ )
22 1zzd ( 𝜑 → 1 ∈ ℤ )
23 21 22 prssd ( 𝜑 → { 0 , 1 } ⊆ ℤ )
24 20 23 fssd ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ ℤ )
25 17 24 fcod ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
26 11 25 feq1dd ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
27 6 9 26 elmapdd ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) )
28 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
29 1 psrbasfsupp 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
30 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
31 28 15 29 30 2 psrbas ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) )
32 27 31 eleqtrrd ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
33 fvexd ( 𝜑 → ( 0g𝑅 ) ∈ V )
34 zex ℤ ∈ V
35 34 a1i ( 𝜑 → ℤ ∈ V )
36 indf1o ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) )
37 f1of ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
38 2 36 37 3syl ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
39 38 ffund ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) )
40 2 pwexd ( 𝜑 → 𝒫 𝐼 ∈ V )
41 ssrab2 { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼
42 41 a1i ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 )
43 40 42 ssexd ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ V )
44 hashcl ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 )
45 2 44 syl ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 )
46 4 nn0zd ( 𝜑𝐾 ∈ ℤ )
47 bccl ( ( ( ♯ ‘ 𝐼 ) ∈ ℕ0𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 )
48 45 46 47 syl2anc ( 𝜑 → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 )
49 hashbc ( ( 𝐼 ∈ Fin ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) = ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) )
50 2 46 49 syl2anc ( 𝜑 → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) = ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) )
51 50 eqcomd ( 𝜑 → ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ( ( ♯ ‘ 𝐼 ) C 𝐾 ) )
52 hashvnfin ( ( { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ V ∧ ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 ) → ( ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ( ( ♯ ‘ 𝐼 ) C 𝐾 ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin ) )
53 52 imp ( ( ( { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ V ∧ ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin )
54 43 48 51 53 syl21anc ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin )
55 imafi ( ( Fun ( 𝟭 ‘ 𝐼 ) ∧ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin ) → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∈ Fin )
56 39 54 55 syl2anc ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∈ Fin )
57 9 18 56 indfsd ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) finSupp 0 )
58 eqid ( 0g𝑅 ) = ( 0g𝑅 )
59 12 58 zrh0 ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g𝑅 ) )
60 3 59 syl ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g𝑅 ) )
61 33 21 20 17 23 9 35 57 60 fsuppcor ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) finSupp ( 0g𝑅 ) )
62 10 61 eqbrtrd ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) finSupp ( 0g𝑅 ) )
63 eqid ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 )
64 63 28 30 58 5 mplelbas ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ 𝑀 ↔ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) finSupp ( 0g𝑅 ) ) )
65 32 62 64 sylanbrc ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ 𝑀 )