| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplympl.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplympl.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplympl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplympl.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 5 |
|
esplympl.1 |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 6 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
| 7 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 8 |
1 7
|
rabex2 |
⊢ 𝐷 ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 10 |
1 2 3 4
|
esplyfval |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) = ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ) |
| 12 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 13 |
12
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 14 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
14 15
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 17 |
3 13 16
|
3syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 18 |
1 2 3 4
|
esplylem |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) |
| 19 |
|
indf |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 20 |
9 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 21 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 22 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 23 |
21 22
|
prssd |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ℤ ) |
| 24 |
20 23
|
fssd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ ℤ ) |
| 25 |
17 24
|
fcod |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 26 |
11 25
|
feq1dd |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 27 |
6 9 26
|
elmapdd |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 28 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 29 |
1
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 30 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 31 |
28 15 29 30 2
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 32 |
27 31
|
eleqtrrd |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 33 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
| 34 |
|
zex |
⊢ ℤ ∈ V |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ℤ ∈ V ) |
| 36 |
|
indf1o |
⊢ ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 37 |
|
f1of |
⊢ ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 38 |
2 36 37
|
3syl |
⊢ ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 39 |
38
|
ffund |
⊢ ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) ) |
| 40 |
2
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐼 ∈ V ) |
| 41 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 43 |
40 42
|
ssexd |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ V ) |
| 44 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 45 |
2 44
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 46 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 47 |
|
bccl |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 ) |
| 48 |
45 46 47
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 ) |
| 49 |
|
hashbc |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) = ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 50 |
2 46 49
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐼 ) C 𝐾 ) = ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 51 |
50
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ) |
| 52 |
|
hashvnfin |
⊢ ( ( { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ V ∧ ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 ) → ( ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ( ( ♯ ‘ 𝐼 ) C 𝐾 ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin ) ) |
| 53 |
52
|
imp |
⊢ ( ( ( { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ V ∧ ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ( ( ♯ ‘ 𝐼 ) C 𝐾 ) ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin ) |
| 54 |
43 48 51 53
|
syl21anc |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin ) |
| 55 |
|
imafi |
⊢ ( ( Fun ( 𝟭 ‘ 𝐼 ) ∧ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ∈ Fin ) → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∈ Fin ) |
| 56 |
39 54 55
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∈ Fin ) |
| 57 |
9 18 56
|
indfsd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) finSupp 0 ) |
| 58 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 59 |
12 58
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 60 |
3 59
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 61 |
33 21 20 17 23 9 35 57 60
|
fsuppcor |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 62 |
10 61
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) finSupp ( 0g ‘ 𝑅 ) ) |
| 63 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 64 |
63 28 30 58 5
|
mplelbas |
⊢ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ 𝑀 ↔ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 65 |
32 62 64
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ 𝑀 ) |