Metamath Proof Explorer


Theorem esplymhp

Description: The K -th elementary symmetric polynomial is homogeneous of degree K . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplympl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
esplympl.i ( 𝜑𝐼 ∈ Fin )
esplympl.r ( 𝜑𝑅 ∈ Ring )
esplympl.k ( 𝜑𝐾 ∈ ℕ0 )
esplymhp.1 𝐻 = ( 𝐼 mHomP 𝑅 )
Assertion esplymhp ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( 𝐻𝐾 ) )

Proof

Step Hyp Ref Expression
1 esplympl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
2 esplympl.i ( 𝜑𝐼 ∈ Fin )
3 esplympl.r ( 𝜑𝑅 ∈ Ring )
4 esplympl.k ( 𝜑𝐾 ∈ ℕ0 )
5 esplymhp.1 𝐻 = ( 𝐼 mHomP 𝑅 )
6 2 ad2antrr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝐼 ∈ Fin )
7 simpr ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 )
8 6 ad2antrr ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝐼 ∈ Fin )
9 ssrab2 { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼
10 9 a1i ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 )
11 10 sselda ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑏 ∈ 𝒫 𝐼 )
12 11 elpwid ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑏𝐼 )
13 12 adantr ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝑏𝐼 )
14 indf ( ( 𝐼 ∈ Fin ∧ 𝑏𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) : 𝐼 ⟶ { 0 , 1 } )
15 8 13 14 syl2anc ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) : 𝐼 ⟶ { 0 , 1 } )
16 7 15 feq1dd ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝑑 : 𝐼 ⟶ { 0 , 1 } )
17 indf1o ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) )
18 f1of ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
19 2 17 18 3syl ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) )
20 19 ffund ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) )
21 20 ad2antrr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → Fun ( 𝟭 ‘ 𝐼 ) )
22 ovex ( ℕ0m 𝐼 ) ∈ V
23 1 ssrab3 𝐷 ⊆ ( ℕ0m 𝐼 )
24 22 23 ssexi 𝐷 ∈ V
25 24 a1i ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝐷 ∈ V )
26 3 ad2antrr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝑅 ∈ Ring )
27 4 ad2antrr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝐾 ∈ ℕ0 )
28 1 6 26 27 esplylem ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 )
29 simplr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝑑𝐷 )
30 simpr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) )
31 30 neneqd ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ¬ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( 0g𝑅 ) )
32 indf ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } )
33 25 28 32 syl2anc ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } )
34 33 adantr ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } )
35 29 adantr ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → 𝑑𝐷 )
36 34 35 ffvelcdmd ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ∈ { 0 , 1 } )
37 simpr ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 )
38 elprn2 ( ( ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ∈ { 0 , 1 } ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 0 )
39 36 37 38 syl2anc ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 0 )
40 39 fveq2d ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) )
41 eqid ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 )
42 eqid ( 0g𝑅 ) = ( 0g𝑅 )
43 41 42 zrh0 ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g𝑅 ) )
44 3 43 syl ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g𝑅 ) )
45 44 ad3antrrr ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g𝑅 ) )
46 40 45 eqtrd ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) = ( 0g𝑅 ) )
47 1 2 3 4 esplyfval ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) )
48 47 ad2antrr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) )
49 48 fveq1d ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝑑 ) )
50 33 29 fvco3d ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝑑 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) )
51 49 50 eqtrd ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) )
52 51 30 eqnetrrd ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) ≠ ( 0g𝑅 ) )
53 52 adantr ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) ≠ ( 0g𝑅 ) )
54 46 53 pm2.21ddne ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( 0g𝑅 ) )
55 31 54 mtand ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ¬ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 )
56 nne ( ¬ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ↔ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 )
57 55 56 sylib ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 )
58 ind1a ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷𝑑𝐷 ) → ( ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 ↔ 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) )
59 58 biimpa ( ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷𝑑𝐷 ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 ) → 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) )
60 25 28 29 57 59 syl31anc ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) )
61 fvelima ( ( Fun ( 𝟭 ‘ 𝐼 ) ∧ 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ∃ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 )
62 21 60 61 syl2anc ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ∃ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 )
63 16 62 r19.29a ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝑑 : 𝐼 ⟶ { 0 , 1 } )
64 6 63 indfsid ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝑑 = ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) )
65 64 oveq2d ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ℂfld Σg 𝑑 ) = ( ℂfld Σg ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) ) )
66 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
67 66 a1i ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ℕ0 ∈ ( SubMnd ‘ ℂfld ) )
68 23 a1i ( 𝜑𝐷 ⊆ ( ℕ0m 𝐼 ) )
69 68 sselda ( ( 𝜑𝑑𝐷 ) → 𝑑 ∈ ( ℕ0m 𝐼 ) )
70 69 adantr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝑑 ∈ ( ℕ0m 𝐼 ) )
71 6 67 70 elmaprd ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → 𝑑 : 𝐼 ⟶ ℕ0 )
72 eqid ( ℂflds0 ) = ( ℂflds0 )
73 6 67 71 72 gsumsubm ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ℂfld Σg 𝑑 ) = ( ( ℂflds0 ) Σg 𝑑 ) )
74 suppssdm ( 𝑑 supp 0 ) ⊆ dom 𝑑
75 2 adantr ( ( 𝜑𝑑𝐷 ) → 𝐼 ∈ Fin )
76 nn0ex 0 ∈ V
77 76 a1i ( ( 𝜑𝑑𝐷 ) → ℕ0 ∈ V )
78 75 77 69 elmaprd ( ( 𝜑𝑑𝐷 ) → 𝑑 : 𝐼 ⟶ ℕ0 )
79 78 fdmd ( ( 𝜑𝑑𝐷 ) → dom 𝑑 = 𝐼 )
80 79 adantr ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → dom 𝑑 = 𝐼 )
81 74 80 sseqtrid ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( 𝑑 supp 0 ) ⊆ 𝐼 )
82 6 81 ssfid ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( 𝑑 supp 0 ) ∈ Fin )
83 6 81 82 gsumind ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ℂfld Σg ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) ) = ( ♯ ‘ ( 𝑑 supp 0 ) ) )
84 7 oveq1d ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) supp 0 ) = ( 𝑑 supp 0 ) )
85 indsupp ( ( 𝐼 ∈ Fin ∧ 𝑏𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) supp 0 ) = 𝑏 )
86 8 13 85 syl2anc ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) supp 0 ) = 𝑏 )
87 84 86 eqtr3d ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( 𝑑 supp 0 ) = 𝑏 )
88 87 fveq2d ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ♯ ‘ ( 𝑑 supp 0 ) ) = ( ♯ ‘ 𝑏 ) )
89 fveqeq2 ( 𝑐 = 𝑏 → ( ( ♯ ‘ 𝑐 ) = 𝐾 ↔ ( ♯ ‘ 𝑏 ) = 𝐾 ) )
90 simplr ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } )
91 89 90 elrabrd ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ♯ ‘ 𝑏 ) = 𝐾 )
92 88 91 eqtrd ( ( ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ♯ ‘ ( 𝑑 supp 0 ) ) = 𝐾 )
93 92 62 r19.29a ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ♯ ‘ ( 𝑑 supp 0 ) ) = 𝐾 )
94 83 93 eqtrd ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ℂfld Σg ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) ) = 𝐾 )
95 65 73 94 3eqtr3d ( ( ( 𝜑𝑑𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ) → ( ( ℂflds0 ) Σg 𝑑 ) = 𝐾 )
96 95 ex ( ( 𝜑𝑑𝐷 ) → ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑑 ) = 𝐾 ) )
97 96 ralrimiva ( 𝜑 → ∀ 𝑑𝐷 ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑑 ) = 𝐾 ) )
98 eqid ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 )
99 eqid ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
100 1 psrbasfsupp 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
101 1 2 3 4 99 esplympl ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) )
102 5 98 99 42 100 4 101 ismhp3 ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( 𝐻𝐾 ) ↔ ∀ 𝑑𝐷 ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑑 ) = 𝐾 ) ) )
103 97 102 mpbird ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( 𝐻𝐾 ) )