| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplympl.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplympl.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplympl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplympl.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 5 |
|
esplymhp.1 |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
| 6 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝐼 ∈ Fin ) |
| 7 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) |
| 8 |
6
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝐼 ∈ Fin ) |
| 9 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ⊆ 𝒫 𝐼 ) |
| 11 |
10
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑏 ∈ 𝒫 𝐼 ) |
| 12 |
11
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) → 𝑏 ⊆ 𝐼 ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝑏 ⊆ 𝐼 ) |
| 14 |
|
indf |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑏 ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 15 |
8 13 14
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) : 𝐼 ⟶ { 0 , 1 } ) |
| 16 |
7 15
|
feq1dd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝑑 : 𝐼 ⟶ { 0 , 1 } ) |
| 17 |
|
indf1o |
⊢ ( 𝐼 ∈ Fin → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 18 |
|
f1of |
⊢ ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 19 |
2 17 18
|
3syl |
⊢ ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 20 |
19
|
ffund |
⊢ ( 𝜑 → Fun ( 𝟭 ‘ 𝐼 ) ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → Fun ( 𝟭 ‘ 𝐼 ) ) |
| 22 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 23 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) |
| 24 |
22 23
|
ssexi |
⊢ 𝐷 ∈ V |
| 25 |
24
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝐷 ∈ V ) |
| 26 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 27 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝐾 ∈ ℕ0 ) |
| 28 |
1 6 26 27
|
esplylem |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑑 ∈ 𝐷 ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 31 |
30
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ¬ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 32 |
|
indf |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 33 |
25 28 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 34 |
33
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) : 𝐷 ⟶ { 0 , 1 } ) |
| 35 |
29
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → 𝑑 ∈ 𝐷 ) |
| 36 |
34 35
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ∈ { 0 , 1 } ) |
| 37 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) |
| 38 |
|
elprn2 |
⊢ ( ( ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ∈ { 0 , 1 } ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 0 ) |
| 39 |
36 37 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 0 ) |
| 40 |
39
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) |
| 41 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 43 |
41 42
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 44 |
3 43
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 45 |
44
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 46 |
40 45
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) = ( 0g ‘ 𝑅 ) ) |
| 47 |
1 2 3 4
|
esplyfval |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 49 |
48
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝑑 ) ) |
| 50 |
33 29
|
fvco3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ‘ 𝑑 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) ) |
| 51 |
49 50
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) ) |
| 52 |
51 30
|
eqnetrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
| 54 |
46 53
|
pm2.21ddne |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) = ( 0g ‘ 𝑅 ) ) |
| 55 |
31 54
|
mtand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ¬ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ) |
| 56 |
|
nne |
⊢ ( ¬ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) ≠ 1 ↔ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 ) |
| 57 |
55 56
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 ) |
| 58 |
|
ind1a |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 ↔ 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) |
| 59 |
58
|
biimpa |
⊢ ( ( ( 𝐷 ∈ V ∧ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ⊆ 𝐷 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ‘ 𝑑 ) = 1 ) → 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 60 |
25 28 29 57 59
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 61 |
|
fvelima |
⊢ ( ( Fun ( 𝟭 ‘ 𝐼 ) ∧ 𝑑 ∈ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) → ∃ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) |
| 62 |
21 60 61
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) |
| 63 |
16 62
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑑 : 𝐼 ⟶ { 0 , 1 } ) |
| 64 |
6 63
|
indfsid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑑 = ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) ) |
| 65 |
64
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ℂfld Σg 𝑑 ) = ( ℂfld Σg ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) ) ) |
| 66 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
| 67 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) |
| 68 |
23
|
a1i |
⊢ ( 𝜑 → 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 69 |
68
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑑 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 71 |
6 67 70
|
elmaprd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
| 72 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
| 73 |
6 67 71 72
|
gsumsubm |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ℂfld Σg 𝑑 ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) ) |
| 74 |
|
suppssdm |
⊢ ( 𝑑 supp 0 ) ⊆ dom 𝑑 |
| 75 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝐼 ∈ Fin ) |
| 76 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ℕ0 ∈ V ) |
| 78 |
75 77 69
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
| 79 |
78
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → dom 𝑑 = 𝐼 ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → dom 𝑑 = 𝐼 ) |
| 81 |
74 80
|
sseqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑑 supp 0 ) ⊆ 𝐼 ) |
| 82 |
6 81
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑑 supp 0 ) ∈ Fin ) |
| 83 |
6 81 82
|
gsumind |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ℂfld Σg ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) ) = ( ♯ ‘ ( 𝑑 supp 0 ) ) ) |
| 84 |
7
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) supp 0 ) = ( 𝑑 supp 0 ) ) |
| 85 |
|
indsupp |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑏 ⊆ 𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) supp 0 ) = 𝑏 ) |
| 86 |
8 13 85
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) supp 0 ) = 𝑏 ) |
| 87 |
84 86
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( 𝑑 supp 0 ) = 𝑏 ) |
| 88 |
87
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ♯ ‘ ( 𝑑 supp 0 ) ) = ( ♯ ‘ 𝑏 ) ) |
| 89 |
|
fveqeq2 |
⊢ ( 𝑐 = 𝑏 → ( ( ♯ ‘ 𝑐 ) = 𝐾 ↔ ( ♯ ‘ 𝑏 ) = 𝐾 ) ) |
| 90 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) |
| 91 |
89 90
|
elrabrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ♯ ‘ 𝑏 ) = 𝐾 ) |
| 92 |
88 91
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑏 ∈ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ 𝑏 ) = 𝑑 ) → ( ♯ ‘ ( 𝑑 supp 0 ) ) = 𝐾 ) |
| 93 |
92 62
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ♯ ‘ ( 𝑑 supp 0 ) ) = 𝐾 ) |
| 94 |
83 93
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ℂfld Σg ( ( 𝟭 ‘ 𝐼 ) ‘ ( 𝑑 supp 0 ) ) ) = 𝐾 ) |
| 95 |
65 73 94
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 𝐾 ) |
| 96 |
95
|
ex |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 𝐾 ) ) |
| 97 |
96
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝐷 ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 𝐾 ) ) |
| 98 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 99 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 100 |
1
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 101 |
1 2 3 4 99
|
esplympl |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 102 |
5 98 99 42 100 4 101
|
ismhp3 |
⊢ ( 𝜑 → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( 𝐻 ‘ 𝐾 ) ↔ ∀ 𝑑 ∈ 𝐷 ( ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 𝐾 ) ) ) |
| 103 |
97 102
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( 𝐻 ‘ 𝐾 ) ) |