Metamath Proof Explorer


Theorem elprn2

Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elprn2 ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐶 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 elpri ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
2 1 adantr ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐶 ) → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
3 neneq ( 𝐴𝐶 → ¬ 𝐴 = 𝐶 )
4 3 adantl ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐶 ) → ¬ 𝐴 = 𝐶 )
5 2 4 olcnd ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐶 ) → 𝐴 = 𝐵 )