Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elprn2 | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
| 3 | neneq | ⊢ ( 𝐴 ≠ 𝐶 → ¬ 𝐴 = 𝐶 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → ¬ 𝐴 = 𝐶 ) |
| 5 | 2 4 | olcnd | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → 𝐴 = 𝐵 ) |