Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elprn2 | |- ( ( A e. { B , C } /\ A =/= C ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. { B , C } /\ A =/= C ) -> ( A = B \/ A = C ) ) |
| 3 | neneq | |- ( A =/= C -> -. A = C ) |
|
| 4 | 3 | adantl | |- ( ( A e. { B , C } /\ A =/= C ) -> -. A = C ) |
| 5 | 2 4 | olcnd | |- ( ( A e. { B , C } /\ A =/= C ) -> A = B ) |