Metamath Proof Explorer


Theorem esplymhp

Description: The K -th elementary symmetric polynomial is homogeneous of degree K . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplympl.d D = h 0 I | finSupp 0 h
esplympl.i φ I Fin
esplympl.r φ R Ring
esplympl.k φ K 0
esplymhp.1 H = I mHomP R
Assertion esplymhp Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( H ` K ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplympl.d D = h 0 I | finSupp 0 h
2 esplympl.i φ I Fin
3 esplympl.r φ R Ring
4 esplympl.k φ K 0
5 esplymhp.1 H = I mHomP R
6 2 ad2antrr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> I e. Fin ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> I e. Fin ) with typecode |-
7 simpr Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( _Ind ` I ) ` b ) = d ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( _Ind ` I ) ` b ) = d ) with typecode |-
8 6 ad2antrr Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> I e. Fin ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> I e. Fin ) with typecode |-
9 ssrab2 c 𝒫 I | c = K 𝒫 I
10 9 a1i Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) with typecode |-
11 10 sselda Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) -> b e. ~P I ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) -> b e. ~P I ) with typecode |-
12 11 elpwid Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) -> b C_ I ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) -> b C_ I ) with typecode |-
13 12 adantr Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> b C_ I ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> b C_ I ) with typecode |-
14 indf I Fin b I 𝟙 I b : I 0 1
15 8 13 14 syl2anc Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( _Ind ` I ) ` b ) : I --> { 0 , 1 } ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( _Ind ` I ) ` b ) : I --> { 0 , 1 } ) with typecode |-
16 7 15 feq1dd Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> d : I --> { 0 , 1 } ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> d : I --> { 0 , 1 } ) with typecode |-
17 indf1o I Fin 𝟙 I : 𝒫 I 1-1 onto 0 1 I
18 f1of 𝟙 I : 𝒫 I 1-1 onto 0 1 I 𝟙 I : 𝒫 I 0 1 I
19 2 17 18 3syl φ 𝟙 I : 𝒫 I 0 1 I
20 19 ffund φ Fun 𝟙 I
21 20 ad2antrr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> Fun ( _Ind ` I ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> Fun ( _Ind ` I ) ) with typecode |-
22 ovex 0 I V
23 1 ssrab3 D 0 I
24 22 23 ssexi D V
25 24 a1i Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> D e. _V ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> D e. _V ) with typecode |-
26 3 ad2antrr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> R e. Ring ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> R e. Ring ) with typecode |-
27 4 ad2antrr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> K e. NN0 ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> K e. NN0 ) with typecode |-
28 1 6 26 27 esplylem Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) with typecode |-
29 simplr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. D ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. D ) with typecode |-
30 simpr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) with typecode |-
31 30 neneqd Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> -. ( ( ( I eSymPoly R ) ` K ) ` d ) = ( 0g ` R ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> -. ( ( ( I eSymPoly R ) ` K ) ` d ) = ( 0g ` R ) ) with typecode |-
32 indf D V 𝟙 I c 𝒫 I | c = K D 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
33 25 28 32 syl2anc Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) with typecode |-
34 33 adantr Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) with typecode |-
35 29 adantr Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> d e. D ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> d e. D ) with typecode |-
36 34 35 ffvelcdmd Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) e. { 0 , 1 } ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) e. { 0 , 1 } ) with typecode |-
37 simpr Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) with typecode |-
38 elprn2 𝟙 D 𝟙 I c 𝒫 I | c = K d 0 1 𝟙 D 𝟙 I c 𝒫 I | c = K d 1 𝟙 D 𝟙 I c 𝒫 I | c = K d = 0
39 36 37 38 syl2anc Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 0 ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 0 ) with typecode |-
40 39 fveq2d Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) = ( ( ZRHom ` R ) ` 0 ) ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) = ( ( ZRHom ` R ) ` 0 ) ) with typecode |-
41 eqid ℤRHom R = ℤRHom R
42 eqid 0 R = 0 R
43 41 42 zrh0 R Ring ℤRHom R 0 = 0 R
44 3 43 syl φ ℤRHom R 0 = 0 R
45 44 ad3antrrr Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) with typecode |-
46 40 45 eqtrd Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) = ( 0g ` R ) ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) = ( 0g ` R ) ) with typecode |-
47 1 2 3 4 esplyfval Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
48 47 ad2antrr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
49 48 fveq1d Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` d ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` d ) ) with typecode |-
50 33 29 fvco3d Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` d ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` d ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) ) with typecode |-
51 49 50 eqtrd Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) ) with typecode |-
52 51 30 eqnetrrd Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) =/= ( 0g ` R ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) =/= ( 0g ` R ) ) with typecode |-
53 52 adantr Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) =/= ( 0g ` R ) ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ZRHom ` R ) ` ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) ) =/= ( 0g ` R ) ) with typecode |-
54 46 53 pm2.21ddne Could not format ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( 0g ` R ) ) : No typesetting found for |- ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) -> ( ( ( I eSymPoly R ) ` K ) ` d ) = ( 0g ` R ) ) with typecode |-
55 31 54 mtand Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> -. ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> -. ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) =/= 1 ) with typecode |-
56 nne ¬ 𝟙 D 𝟙 I c 𝒫 I | c = K d 1 𝟙 D 𝟙 I c 𝒫 I | c = K d = 1
57 55 56 sylib Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 1 ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ` d ) = 1 ) with typecode |-
58 ind1a D V 𝟙 I c 𝒫 I | c = K D d D 𝟙 D 𝟙 I c 𝒫 I | c = K d = 1 d 𝟙 I c 𝒫 I | c = K
59 58 biimpa D V 𝟙 I c 𝒫 I | c = K D d D 𝟙 D 𝟙 I c 𝒫 I | c = K d = 1 d 𝟙 I c 𝒫 I | c = K
60 25 28 29 57 59 syl31anc Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) with typecode |-
61 fvelima Fun 𝟙 I d 𝟙 I c 𝒫 I | c = K b c 𝒫 I | c = K 𝟙 I b = d
62 21 60 61 syl2anc Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> E. b e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` b ) = d ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> E. b e. { c e. ~P I | ( # ` c ) = K } ( ( _Ind ` I ) ` b ) = d ) with typecode |-
63 16 62 r19.29a Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d : I --> { 0 , 1 } ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d : I --> { 0 , 1 } ) with typecode |-
64 6 63 indfsid Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d = ( ( _Ind ` I ) ` ( d supp 0 ) ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d = ( ( _Ind ` I ) ` ( d supp 0 ) ) ) with typecode |-
65 64 oveq2d Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum d ) = ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum d ) = ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) ) with typecode |-
66 nn0subm 0 SubMnd fld
67 66 a1i Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> NN0 e. ( SubMnd ` CCfld ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> NN0 e. ( SubMnd ` CCfld ) ) with typecode |-
68 23 a1i φ D 0 I
69 68 sselda φ d D d 0 I
70 69 adantr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. ( NN0 ^m I ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d e. ( NN0 ^m I ) ) with typecode |-
71 6 67 70 elmaprd Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d : I --> NN0 ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> d : I --> NN0 ) with typecode |-
72 eqid fld 𝑠 0 = fld 𝑠 0
73 6 67 71 72 gsumsubm Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum d ) = ( ( CCfld |`s NN0 ) gsum d ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum d ) = ( ( CCfld |`s NN0 ) gsum d ) ) with typecode |-
74 suppssdm d supp 0 dom d
75 2 adantr φ d D I Fin
76 nn0ex 0 V
77 76 a1i φ d D 0 V
78 75 77 69 elmaprd φ d D d : I 0
79 78 fdmd φ d D dom d = I
80 79 adantr Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> dom d = I ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> dom d = I ) with typecode |-
81 74 80 sseqtrid Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( d supp 0 ) C_ I ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( d supp 0 ) C_ I ) with typecode |-
82 6 81 ssfid Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( d supp 0 ) e. Fin ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( d supp 0 ) e. Fin ) with typecode |-
83 6 81 82 gsumind Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) = ( # ` ( d supp 0 ) ) ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) = ( # ` ( d supp 0 ) ) ) with typecode |-
84 7 oveq1d Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( ( _Ind ` I ) ` b ) supp 0 ) = ( d supp 0 ) ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( ( _Ind ` I ) ` b ) supp 0 ) = ( d supp 0 ) ) with typecode |-
85 indsupp I Fin b I 𝟙 I b supp 0 = b
86 8 13 85 syl2anc Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( ( _Ind ` I ) ` b ) supp 0 ) = b ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( ( ( _Ind ` I ) ` b ) supp 0 ) = b ) with typecode |-
87 84 86 eqtr3d Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( d supp 0 ) = b ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( d supp 0 ) = b ) with typecode |-
88 87 fveq2d Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` ( d supp 0 ) ) = ( # ` b ) ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` ( d supp 0 ) ) = ( # ` b ) ) with typecode |-
89 fveqeq2 c = b c = K b = K
90 simplr Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> b e. { c e. ~P I | ( # ` c ) = K } ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> b e. { c e. ~P I | ( # ` c ) = K } ) with typecode |-
91 89 90 elrabrd Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` b ) = K ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` b ) = K ) with typecode |-
92 88 91 eqtrd Could not format ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` ( d supp 0 ) ) = K ) : No typesetting found for |- ( ( ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) /\ b e. { c e. ~P I | ( # ` c ) = K } ) /\ ( ( _Ind ` I ) ` b ) = d ) -> ( # ` ( d supp 0 ) ) = K ) with typecode |-
93 92 62 r19.29a Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( # ` ( d supp 0 ) ) = K ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( # ` ( d supp 0 ) ) = K ) with typecode |-
94 83 93 eqtrd Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) = K ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( CCfld gsum ( ( _Ind ` I ) ` ( d supp 0 ) ) ) = K ) with typecode |-
95 65 73 94 3eqtr3d Could not format ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) : No typesetting found for |- ( ( ( ph /\ d e. D ) /\ ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) with typecode |-
96 95 ex Could not format ( ( ph /\ d e. D ) -> ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) : No typesetting found for |- ( ( ph /\ d e. D ) -> ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) with typecode |-
97 96 ralrimiva Could not format ( ph -> A. d e. D ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) : No typesetting found for |- ( ph -> A. d e. D ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) with typecode |-
98 eqid I mPoly R = I mPoly R
99 eqid Base I mPoly R = Base I mPoly R
100 1 psrbasfsupp D = h 0 I | h -1 Fin
101 1 2 3 4 99 esplympl Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
102 5 98 99 42 100 4 101 ismhp3 Could not format ( ph -> ( ( ( I eSymPoly R ) ` K ) e. ( H ` K ) <-> A. d e. D ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) ) : No typesetting found for |- ( ph -> ( ( ( I eSymPoly R ) ` K ) e. ( H ` K ) <-> A. d e. D ( ( ( ( I eSymPoly R ) ` K ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = K ) ) ) with typecode |-
103 97 102 mpbird Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( H ` K ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( H ` K ) ) with typecode |-