Metamath Proof Explorer


Theorem gsumind

Description: The group sum of an indicator function of the set A gives the size of A . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses gsumind.1 φ O V
gsumind.2 φ A O
gsumind.3 φ A Fin
Assertion gsumind φ fld 𝟙 O A = A

Proof

Step Hyp Ref Expression
1 gsumind.1 φ O V
2 gsumind.2 φ A O
3 gsumind.3 φ A Fin
4 indval2 O V A O 𝟙 O A = A × 1 O A × 0
5 1 2 4 syl2anc φ 𝟙 O A = A × 1 O A × 0
6 5 reseq1d φ 𝟙 O A A = A × 1 O A × 0 A
7 1ex 1 V
8 7 fconst A × 1 : A 1
9 8 a1i φ A × 1 : A 1
10 9 ffnd φ A × 1 Fn A
11 c0ex 0 V
12 11 fconst O A × 0 : O A 0
13 12 a1i φ O A × 0 : O A 0
14 13 ffnd φ O A × 0 Fn O A
15 disjdif A O A =
16 15 a1i φ A O A =
17 fnunres1 A × 1 Fn A O A × 0 Fn O A A O A = A × 1 O A × 0 A = A × 1
18 10 14 16 17 syl3anc φ A × 1 O A × 0 A = A × 1
19 fconstmpt A × 1 = x A 1
20 19 a1i φ A × 1 = x A 1
21 6 18 20 3eqtrd φ 𝟙 O A A = x A 1
22 21 oveq2d φ fld 𝟙 O A A = fld x A 1
23 cnfldbas = Base fld
24 cnfld0 0 = 0 fld
25 cnfldfld fld Field
26 25 a1i φ fld Field
27 26 fldcrngd φ fld CRing
28 27 crngringd φ fld Ring
29 28 ringcmnd φ fld CMnd
30 indf O V A O 𝟙 O A : O 0 1
31 1 2 30 syl2anc φ 𝟙 O A : O 0 1
32 0cnd φ 0
33 1cnd φ 1
34 32 33 prssd φ 0 1
35 31 34 fssd φ 𝟙 O A : O
36 indsupp O V A O 𝟙 O A supp 0 = A
37 1 2 36 syl2anc φ 𝟙 O A supp 0 = A
38 37 eqimssd φ 𝟙 O A supp 0 A
39 1 2 3 indfsd φ finSupp 0 𝟙 O A
40 23 24 29 1 35 38 39 gsumres φ fld 𝟙 O A A = fld 𝟙 O A
41 27 crnggrpd φ fld Grp
42 41 grpmndd φ fld Mnd
43 eqid fld = fld
44 23 43 gsumconst fld Mnd A Fin 1 fld x A 1 = A fld 1
45 42 3 33 44 syl3anc φ fld x A 1 = A fld 1
46 22 40 45 3eqtr3d φ fld 𝟙 O A = A fld 1
47 hashcl A Fin A 0
48 3 47 syl φ A 0
49 48 nn0zd φ A
50 cnfldmulg A 1 A fld 1 = A 1
51 49 33 50 syl2anc φ A fld 1 = A 1
52 48 nn0cnd φ A
53 52 mulridd φ A 1 = A
54 46 51 53 3eqtrd φ fld 𝟙 O A = A