| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumind.1 |
|- ( ph -> O e. V ) |
| 2 |
|
gsumind.2 |
|- ( ph -> A C_ O ) |
| 3 |
|
gsumind.3 |
|- ( ph -> A e. Fin ) |
| 4 |
|
indval2 |
|- ( ( O e. V /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) = ( ( A X. { 1 } ) u. ( ( O \ A ) X. { 0 } ) ) ) |
| 5 |
1 2 4
|
syl2anc |
|- ( ph -> ( ( _Ind ` O ) ` A ) = ( ( A X. { 1 } ) u. ( ( O \ A ) X. { 0 } ) ) ) |
| 6 |
5
|
reseq1d |
|- ( ph -> ( ( ( _Ind ` O ) ` A ) |` A ) = ( ( ( A X. { 1 } ) u. ( ( O \ A ) X. { 0 } ) ) |` A ) ) |
| 7 |
|
1ex |
|- 1 e. _V |
| 8 |
7
|
fconst |
|- ( A X. { 1 } ) : A --> { 1 } |
| 9 |
8
|
a1i |
|- ( ph -> ( A X. { 1 } ) : A --> { 1 } ) |
| 10 |
9
|
ffnd |
|- ( ph -> ( A X. { 1 } ) Fn A ) |
| 11 |
|
c0ex |
|- 0 e. _V |
| 12 |
11
|
fconst |
|- ( ( O \ A ) X. { 0 } ) : ( O \ A ) --> { 0 } |
| 13 |
12
|
a1i |
|- ( ph -> ( ( O \ A ) X. { 0 } ) : ( O \ A ) --> { 0 } ) |
| 14 |
13
|
ffnd |
|- ( ph -> ( ( O \ A ) X. { 0 } ) Fn ( O \ A ) ) |
| 15 |
|
disjdif |
|- ( A i^i ( O \ A ) ) = (/) |
| 16 |
15
|
a1i |
|- ( ph -> ( A i^i ( O \ A ) ) = (/) ) |
| 17 |
|
fnunres1 |
|- ( ( ( A X. { 1 } ) Fn A /\ ( ( O \ A ) X. { 0 } ) Fn ( O \ A ) /\ ( A i^i ( O \ A ) ) = (/) ) -> ( ( ( A X. { 1 } ) u. ( ( O \ A ) X. { 0 } ) ) |` A ) = ( A X. { 1 } ) ) |
| 18 |
10 14 16 17
|
syl3anc |
|- ( ph -> ( ( ( A X. { 1 } ) u. ( ( O \ A ) X. { 0 } ) ) |` A ) = ( A X. { 1 } ) ) |
| 19 |
|
fconstmpt |
|- ( A X. { 1 } ) = ( x e. A |-> 1 ) |
| 20 |
19
|
a1i |
|- ( ph -> ( A X. { 1 } ) = ( x e. A |-> 1 ) ) |
| 21 |
6 18 20
|
3eqtrd |
|- ( ph -> ( ( ( _Ind ` O ) ` A ) |` A ) = ( x e. A |-> 1 ) ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( ( _Ind ` O ) ` A ) |` A ) ) = ( CCfld gsum ( x e. A |-> 1 ) ) ) |
| 23 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 24 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 25 |
|
cnfldfld |
|- CCfld e. Field |
| 26 |
25
|
a1i |
|- ( ph -> CCfld e. Field ) |
| 27 |
26
|
fldcrngd |
|- ( ph -> CCfld e. CRing ) |
| 28 |
27
|
crngringd |
|- ( ph -> CCfld e. Ring ) |
| 29 |
28
|
ringcmnd |
|- ( ph -> CCfld e. CMnd ) |
| 30 |
|
indf |
|- ( ( O e. V /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
| 31 |
1 2 30
|
syl2anc |
|- ( ph -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
| 32 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 33 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 34 |
32 33
|
prssd |
|- ( ph -> { 0 , 1 } C_ CC ) |
| 35 |
31 34
|
fssd |
|- ( ph -> ( ( _Ind ` O ) ` A ) : O --> CC ) |
| 36 |
|
indsupp |
|- ( ( O e. V /\ A C_ O ) -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = A ) |
| 37 |
1 2 36
|
syl2anc |
|- ( ph -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = A ) |
| 38 |
37
|
eqimssd |
|- ( ph -> ( ( ( _Ind ` O ) ` A ) supp 0 ) C_ A ) |
| 39 |
1 2 3
|
indfsd |
|- ( ph -> ( ( _Ind ` O ) ` A ) finSupp 0 ) |
| 40 |
23 24 29 1 35 38 39
|
gsumres |
|- ( ph -> ( CCfld gsum ( ( ( _Ind ` O ) ` A ) |` A ) ) = ( CCfld gsum ( ( _Ind ` O ) ` A ) ) ) |
| 41 |
27
|
crnggrpd |
|- ( ph -> CCfld e. Grp ) |
| 42 |
41
|
grpmndd |
|- ( ph -> CCfld e. Mnd ) |
| 43 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
| 44 |
23 43
|
gsumconst |
|- ( ( CCfld e. Mnd /\ A e. Fin /\ 1 e. CC ) -> ( CCfld gsum ( x e. A |-> 1 ) ) = ( ( # ` A ) ( .g ` CCfld ) 1 ) ) |
| 45 |
42 3 33 44
|
syl3anc |
|- ( ph -> ( CCfld gsum ( x e. A |-> 1 ) ) = ( ( # ` A ) ( .g ` CCfld ) 1 ) ) |
| 46 |
22 40 45
|
3eqtr3d |
|- ( ph -> ( CCfld gsum ( ( _Ind ` O ) ` A ) ) = ( ( # ` A ) ( .g ` CCfld ) 1 ) ) |
| 47 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 48 |
3 47
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
| 49 |
48
|
nn0zd |
|- ( ph -> ( # ` A ) e. ZZ ) |
| 50 |
|
cnfldmulg |
|- ( ( ( # ` A ) e. ZZ /\ 1 e. CC ) -> ( ( # ` A ) ( .g ` CCfld ) 1 ) = ( ( # ` A ) x. 1 ) ) |
| 51 |
49 33 50
|
syl2anc |
|- ( ph -> ( ( # ` A ) ( .g ` CCfld ) 1 ) = ( ( # ` A ) x. 1 ) ) |
| 52 |
48
|
nn0cnd |
|- ( ph -> ( # ` A ) e. CC ) |
| 53 |
52
|
mulridd |
|- ( ph -> ( ( # ` A ) x. 1 ) = ( # ` A ) ) |
| 54 |
46 51 53
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( ( _Ind ` O ) ` A ) ) = ( # ` A ) ) |