| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumind.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
gsumind.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑂 ) |
| 3 |
|
gsumind.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
indval2 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) = ( ( 𝐴 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) ) ) |
| 5 |
1 2 4
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) = ( ( 𝐴 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) ) ) |
| 6 |
5
|
reseq1d |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ↾ 𝐴 ) = ( ( ( 𝐴 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) ) ↾ 𝐴 ) ) |
| 7 |
|
1ex |
⊢ 1 ∈ V |
| 8 |
7
|
fconst |
⊢ ( 𝐴 × { 1 } ) : 𝐴 ⟶ { 1 } |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { 1 } ) : 𝐴 ⟶ { 1 } ) |
| 10 |
9
|
ffnd |
⊢ ( 𝜑 → ( 𝐴 × { 1 } ) Fn 𝐴 ) |
| 11 |
|
c0ex |
⊢ 0 ∈ V |
| 12 |
11
|
fconst |
⊢ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) : ( 𝑂 ∖ 𝐴 ) ⟶ { 0 } |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) : ( 𝑂 ∖ 𝐴 ) ⟶ { 0 } ) |
| 14 |
13
|
ffnd |
⊢ ( 𝜑 → ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) Fn ( 𝑂 ∖ 𝐴 ) ) |
| 15 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝑂 ∖ 𝐴 ) ) = ∅ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝑂 ∖ 𝐴 ) ) = ∅ ) |
| 17 |
|
fnunres1 |
⊢ ( ( ( 𝐴 × { 1 } ) Fn 𝐴 ∧ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) Fn ( 𝑂 ∖ 𝐴 ) ∧ ( 𝐴 ∩ ( 𝑂 ∖ 𝐴 ) ) = ∅ ) → ( ( ( 𝐴 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) ) ↾ 𝐴 ) = ( 𝐴 × { 1 } ) ) |
| 18 |
10 14 16 17
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) ) ↾ 𝐴 ) = ( 𝐴 × { 1 } ) ) |
| 19 |
|
fconstmpt |
⊢ ( 𝐴 × { 1 } ) = ( 𝑥 ∈ 𝐴 ↦ 1 ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { 1 } ) = ( 𝑥 ∈ 𝐴 ↦ 1 ) ) |
| 21 |
6 18 20
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 1 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ↾ 𝐴 ) ) = ( ℂfld Σg ( 𝑥 ∈ 𝐴 ↦ 1 ) ) ) |
| 23 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 24 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 25 |
|
cnfldfld |
⊢ ℂfld ∈ Field |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → ℂfld ∈ Field ) |
| 27 |
26
|
fldcrngd |
⊢ ( 𝜑 → ℂfld ∈ CRing ) |
| 28 |
27
|
crngringd |
⊢ ( 𝜑 → ℂfld ∈ Ring ) |
| 29 |
28
|
ringcmnd |
⊢ ( 𝜑 → ℂfld ∈ CMnd ) |
| 30 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 31 |
1 2 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 32 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 33 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 34 |
32 33
|
prssd |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ℂ ) |
| 35 |
31 34
|
fssd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ ℂ ) |
| 36 |
|
indsupp |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = 𝐴 ) |
| 37 |
1 2 36
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = 𝐴 ) |
| 38 |
37
|
eqimssd |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) ⊆ 𝐴 ) |
| 39 |
1 2 3
|
indfsd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) finSupp 0 ) |
| 40 |
23 24 29 1 35 38 39
|
gsumres |
⊢ ( 𝜑 → ( ℂfld Σg ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ↾ 𝐴 ) ) = ( ℂfld Σg ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ) ) |
| 41 |
27
|
crnggrpd |
⊢ ( 𝜑 → ℂfld ∈ Grp ) |
| 42 |
41
|
grpmndd |
⊢ ( 𝜑 → ℂfld ∈ Mnd ) |
| 43 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
| 44 |
23 43
|
gsumconst |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 1 ∈ ℂ ) → ( ℂfld Σg ( 𝑥 ∈ 𝐴 ↦ 1 ) ) = ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) 1 ) ) |
| 45 |
42 3 33 44
|
syl3anc |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑥 ∈ 𝐴 ↦ 1 ) ) = ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) 1 ) ) |
| 46 |
22 40 45
|
3eqtr3d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) 1 ) ) |
| 47 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 48 |
3 47
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 49 |
48
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 50 |
|
cnfldmulg |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ 1 ∈ ℂ ) → ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) 1 ) = ( ( ♯ ‘ 𝐴 ) · 1 ) ) |
| 51 |
49 33 50
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) 1 ) = ( ( ♯ ‘ 𝐴 ) · 1 ) ) |
| 52 |
48
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 53 |
52
|
mulridd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) · 1 ) = ( ♯ ‘ 𝐴 ) ) |
| 54 |
46 51 53
|
3eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |