| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyind.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
esplyind.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 3 |
|
esplyind.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 4 |
|
esplyind.m |
⊢ · = ( .r ‘ 𝑊 ) |
| 5 |
|
esplyind.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 6 |
|
esplyind.g |
⊢ 𝐺 = ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) |
| 7 |
|
esplyind.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 8 |
|
esplyind.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
|
esplyind.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
| 10 |
|
esplyind.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝑌 } ) |
| 11 |
|
esplyind.e |
⊢ 𝐸 = ( 𝐽 eSymPoly 𝑅 ) |
| 12 |
|
esplyind.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) ) |
| 13 |
|
esplyind.1 |
⊢ 𝐶 = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } |
| 14 |
|
ovif12 |
⊢ ( if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g ‘ 𝑅 ) if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) , ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 18 |
8
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑅 ∈ Grp ) |
| 20 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 21 |
15 20 8
|
ringidcld |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 24 |
15 17
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 |
8 23 24
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
22 26
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
15 16 17 19 28
|
grplidd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 30 |
|
snsspr1 |
⊢ { 0 } ⊆ { 0 , 1 } |
| 31 |
30
|
biantru |
⊢ ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ↔ ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ { 0 } ⊆ { 0 , 1 } ) ) |
| 32 |
|
unss |
⊢ ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ { 0 } ⊆ { 0 , 1 } ) ↔ ( ran ( 𝑓 ↾ 𝐽 ) ∪ { 0 } ) ⊆ { 0 , 1 } ) |
| 33 |
31 32
|
bitri |
⊢ ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ↔ ( ran ( 𝑓 ↾ 𝐽 ) ∪ { 0 } ) ⊆ { 0 , 1 } ) |
| 34 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝐼 ∈ Fin ) |
| 35 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ℕ0 ∈ V ) |
| 37 |
5
|
ssrab3 |
⊢ 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 39 |
38
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 40 |
34 36 39
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 : 𝐼 ⟶ ℕ0 ) |
| 41 |
40
|
freld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → Rel 𝑓 ) |
| 42 |
40
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 Fn 𝐼 ) |
| 43 |
42
|
fndmd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → dom 𝑓 = 𝐼 ) |
| 44 |
10
|
uneq1i |
⊢ ( 𝐽 ∪ { 𝑌 } ) = ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) |
| 45 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐼 ) |
| 46 |
|
undifr |
⊢ ( { 𝑌 } ⊆ 𝐼 ↔ ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 ) |
| 47 |
45 46
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 ) |
| 48 |
44 47
|
eqtr2id |
⊢ ( 𝜑 → 𝐼 = ( 𝐽 ∪ { 𝑌 } ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝐼 = ( 𝐽 ∪ { 𝑌 } ) ) |
| 50 |
43 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → dom 𝑓 = ( 𝐽 ∪ { 𝑌 } ) ) |
| 51 |
10
|
ineq1i |
⊢ ( 𝐽 ∩ { 𝑌 } ) = ( ( 𝐼 ∖ { 𝑌 } ) ∩ { 𝑌 } ) |
| 52 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ { 𝑌 } ) ∩ { 𝑌 } ) = ∅ |
| 53 |
51 52
|
eqtri |
⊢ ( 𝐽 ∩ { 𝑌 } ) = ∅ |
| 54 |
53
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝐽 ∩ { 𝑌 } ) = ∅ ) |
| 55 |
|
reldisjun |
⊢ ( ( Rel 𝑓 ∧ dom 𝑓 = ( 𝐽 ∪ { 𝑌 } ) ∧ ( 𝐽 ∩ { 𝑌 } ) = ∅ ) → 𝑓 = ( ( 𝑓 ↾ 𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) ) |
| 56 |
41 50 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 = ( ( 𝑓 ↾ 𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) ) |
| 57 |
56
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ran 𝑓 = ran ( ( 𝑓 ↾ 𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) ) |
| 58 |
|
rnun |
⊢ ran ( ( 𝑓 ↾ 𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) = ( ran ( 𝑓 ↾ 𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) |
| 59 |
57 58
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ran ( 𝑓 ↾ 𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) = ran 𝑓 ) |
| 60 |
42
|
fnfund |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → Fun 𝑓 ) |
| 61 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑌 ∈ 𝐼 ) |
| 62 |
61 43
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑌 ∈ dom 𝑓 ) |
| 63 |
|
rnressnsn |
⊢ ( ( Fun 𝑓 ∧ 𝑌 ∈ dom 𝑓 ) → ran ( 𝑓 ↾ { 𝑌 } ) = { ( 𝑓 ‘ 𝑌 ) } ) |
| 64 |
60 62 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ran ( 𝑓 ↾ { 𝑌 } ) = { ( 𝑓 ‘ 𝑌 ) } ) |
| 65 |
64
|
uneq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ran ( 𝑓 ↾ 𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) = ( ran ( 𝑓 ↾ 𝐽 ) ∪ { ( 𝑓 ‘ 𝑌 ) } ) ) |
| 66 |
59 65
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ran 𝑓 = ( ran ( 𝑓 ↾ 𝐽 ) ∪ { ( 𝑓 ‘ 𝑌 ) } ) ) |
| 67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ran 𝑓 = ( ran ( 𝑓 ↾ 𝐽 ) ∪ { ( 𝑓 ‘ 𝑌 ) } ) ) |
| 68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ‘ 𝑌 ) = 0 ) |
| 69 |
68
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → { ( 𝑓 ‘ 𝑌 ) } = { 0 } ) |
| 70 |
69
|
uneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ran ( 𝑓 ↾ 𝐽 ) ∪ { ( 𝑓 ‘ 𝑌 ) } ) = ( ran ( 𝑓 ↾ 𝐽 ) ∪ { 0 } ) ) |
| 71 |
67 70
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ran 𝑓 = ( ran ( 𝑓 ↾ 𝐽 ) ∪ { 0 } ) ) |
| 72 |
71
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ran 𝑓 ⊆ { 0 , 1 } ↔ ( ran ( 𝑓 ↾ 𝐽 ) ∪ { 0 } ) ⊆ { 0 , 1 } ) ) |
| 73 |
33 72
|
bitr4id |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ↔ ran 𝑓 ⊆ { 0 , 1 } ) ) |
| 74 |
56
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓 ↾ 𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) supp 0 ) ) |
| 75 |
39
|
resexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ↾ 𝐽 ) ∈ V ) |
| 76 |
39
|
resexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ↾ { 𝑌 } ) ∈ V ) |
| 77 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 0 ∈ ℕ0 ) |
| 79 |
75 76 78
|
suppun2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ( ( 𝑓 ↾ 𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) supp 0 ) = ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) ) |
| 80 |
74 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) ) |
| 81 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) ) |
| 82 |
|
fnressn |
⊢ ( ( 𝑓 Fn 𝐼 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑓 ↾ { 𝑌 } ) = { 〈 𝑌 , ( 𝑓 ‘ 𝑌 ) 〉 } ) |
| 83 |
42 61 82
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ↾ { 𝑌 } ) = { 〈 𝑌 , ( 𝑓 ‘ 𝑌 ) 〉 } ) |
| 84 |
83
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = ( { 〈 𝑌 , ( 𝑓 ‘ 𝑌 ) 〉 } supp 0 ) ) |
| 85 |
40 61
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ‘ 𝑌 ) ∈ ℕ0 ) |
| 86 |
|
eqid |
⊢ { 〈 𝑌 , ( 𝑓 ‘ 𝑌 ) 〉 } = { 〈 𝑌 , ( 𝑓 ‘ 𝑌 ) 〉 } |
| 87 |
86
|
suppsnop |
⊢ ( ( 𝑌 ∈ 𝐼 ∧ ( 𝑓 ‘ 𝑌 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( { 〈 𝑌 , ( 𝑓 ‘ 𝑌 ) 〉 } supp 0 ) = if ( ( 𝑓 ‘ 𝑌 ) = 0 , ∅ , { 𝑌 } ) ) |
| 88 |
61 85 78 87
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( { 〈 𝑌 , ( 𝑓 ‘ 𝑌 ) 〉 } supp 0 ) = if ( ( 𝑓 ‘ 𝑌 ) = 0 , ∅ , { 𝑌 } ) ) |
| 89 |
84 88
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = if ( ( 𝑓 ‘ 𝑌 ) = 0 , ∅ , { 𝑌 } ) ) |
| 90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = if ( ( 𝑓 ‘ 𝑌 ) = 0 , ∅ , { 𝑌 } ) ) |
| 91 |
68
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → if ( ( 𝑓 ‘ 𝑌 ) = 0 , ∅ , { 𝑌 } ) = ∅ ) |
| 92 |
90 91
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = ∅ ) |
| 93 |
92
|
uneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) = ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ∅ ) ) |
| 94 |
|
un0 |
⊢ ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ∅ ) = ( ( 𝑓 ↾ 𝐽 ) supp 0 ) |
| 95 |
93 94
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) = ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) |
| 96 |
81 95
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ 𝐽 ) supp 0 ) = ( 𝑓 supp 0 ) ) |
| 97 |
96
|
fveqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ↔ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) |
| 98 |
73 97
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) ↔ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) ) |
| 99 |
98
|
ifbid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 100 |
29 99
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 101 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑅 ∈ Grp ) |
| 102 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 103 |
5
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 104 |
6
|
fveq1i |
⊢ ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) |
| 105 |
|
eqid |
⊢ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 106 |
1
|
fveq2i |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 107 |
5 17 7 8 15 10 105 9 106
|
extvfvalf |
⊢ ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) : ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 108 |
11
|
fveq1i |
⊢ ( 𝐸 ‘ ( 𝐾 − 1 ) ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 − 1 ) ) |
| 109 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝑌 } ) ⊆ 𝐼 ) |
| 110 |
10 109
|
eqsstrid |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 111 |
7 110
|
ssfid |
⊢ ( 𝜑 → 𝐽 ∈ Fin ) |
| 112 |
|
elfznn |
⊢ ( 𝐾 ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) → 𝐾 ∈ ℕ ) |
| 113 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
| 114 |
12 112 113
|
3syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
| 115 |
13 111 8 114 105
|
esplympl |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 − 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 116 |
108 115
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐾 − 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 117 |
107 116
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 118 |
104 117
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 119 |
1 15 102 103 118
|
mplelf |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 120 |
119
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 121 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑓 ∈ 𝐷 ) |
| 122 |
|
indf |
⊢ ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } ) |
| 123 |
7 45 122
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } ) |
| 124 |
77
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 125 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 126 |
125
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 127 |
124 126
|
prssd |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ℕ0 ) |
| 128 |
123 127
|
fssd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 ) |
| 129 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 ) |
| 130 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝐼 ∈ Fin ) |
| 131 |
130
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝐼 ∈ Fin ) |
| 132 |
45
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → { 𝑌 } ⊆ 𝐼 ) |
| 133 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑥 = 𝑌 ) |
| 134 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑌 } ↔ 𝑥 = 𝑌 ) |
| 135 |
133 134
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑥 ∈ { 𝑌 } ) |
| 136 |
|
ind1 |
⊢ ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼 ∧ 𝑥 ∈ { 𝑌 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 1 ) |
| 137 |
131 132 135 136
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 1 ) |
| 138 |
40
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑓 : 𝐼 ⟶ ℕ0 ) |
| 139 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑥 ∈ 𝐼 ) |
| 140 |
138 139
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℕ0 ) |
| 141 |
133
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑌 ) ) |
| 142 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) |
| 143 |
142
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓 ‘ 𝑌 ) ≠ 0 ) |
| 144 |
141 143
|
eqnetrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓 ‘ 𝑥 ) ≠ 0 ) |
| 145 |
|
elnnne0 |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ℕ ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ ℕ0 ∧ ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) |
| 146 |
140 144 145
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℕ ) |
| 147 |
146
|
nnge1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → 1 ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 148 |
137 147
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 = 𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 149 |
130
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → 𝐼 ∈ Fin ) |
| 150 |
45
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → { 𝑌 } ⊆ 𝐼 ) |
| 151 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → 𝑥 ∈ 𝐼 ) |
| 152 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → 𝑥 ≠ 𝑌 ) |
| 153 |
151 152
|
eldifsnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) |
| 154 |
|
ind0 |
⊢ ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼 ∧ 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 0 ) |
| 155 |
149 150 153 154
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 0 ) |
| 156 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑓 : 𝐼 ⟶ ℕ0 ) |
| 157 |
156
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℕ0 ) |
| 158 |
157
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℕ0 ) |
| 159 |
158
|
nn0ge0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → 0 ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 160 |
155 159
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ≠ 𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 161 |
148 160
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 162 |
161
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ∀ 𝑥 ∈ 𝐼 ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 163 |
129
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) |
| 164 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑓 Fn 𝐼 ) |
| 165 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 166 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ) |
| 167 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 168 |
163 164 130 130 165 166 167
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r ≤ 𝑓 ↔ ∀ 𝑥 ∈ 𝐼 ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ) ) |
| 169 |
162 168
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r ≤ 𝑓 ) |
| 170 |
103
|
psrbagcon |
⊢ ( ( 𝑓 ∈ 𝐷 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r ≤ 𝑓 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 ∧ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∘r ≤ 𝑓 ) ) |
| 171 |
170
|
simpld |
⊢ ( ( 𝑓 ∈ 𝐷 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r ≤ 𝑓 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 ) |
| 172 |
121 129 169 171
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 ) |
| 173 |
120 172
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 174 |
15 16 17 101 173
|
grpridd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) |
| 175 |
104
|
fveq1i |
⊢ ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) |
| 176 |
175
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) |
| 177 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑅 ∈ Ring ) |
| 178 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑌 ∈ 𝐼 ) |
| 179 |
116
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝐸 ‘ ( 𝐾 − 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 180 |
5 17 130 177 178 10 105 179 172
|
extvfvv |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = if ( ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 , ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) ) |
| 181 |
13 111 8 114 17 20
|
esplyfval3 |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 − 1 ) ) = ( 𝑧 ∈ 𝐶 ↦ if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 182 |
108 181
|
eqtrid |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐾 − 1 ) ) = ( 𝑧 ∈ 𝐶 ↦ if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 183 |
182
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝐸 ‘ ( 𝐾 − 1 ) ) = ( 𝑧 ∈ 𝐶 ↦ if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 184 |
59
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ( ran ( 𝑓 ↾ 𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) = ran 𝑓 ) |
| 185 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) |
| 186 |
123
|
ffnd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) |
| 187 |
186
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) |
| 188 |
42 187 34 34 165
|
offn |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) Fn 𝐼 ) |
| 189 |
188
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) Fn 𝐼 ) |
| 190 |
110
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝐽 ⊆ 𝐼 ) |
| 191 |
189 190
|
fnssresd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) Fn 𝐽 ) |
| 192 |
|
fneq1 |
⊢ ( 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) → ( 𝑧 Fn 𝐽 ↔ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) Fn 𝐽 ) ) |
| 193 |
192
|
biimpar |
⊢ ( ( 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) Fn 𝐽 ) → 𝑧 Fn 𝐽 ) |
| 194 |
185 191 193
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝑧 Fn 𝐽 ) |
| 195 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝑓 Fn 𝐼 ) |
| 196 |
110
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐽 ⊆ 𝐼 ) |
| 197 |
195 196
|
fnssresd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ↾ 𝐽 ) Fn 𝐽 ) |
| 198 |
197
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( 𝑓 ↾ 𝐽 ) Fn 𝐽 ) |
| 199 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) |
| 200 |
199
|
fveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑧 ‘ 𝑥 ) = ( ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ‘ 𝑥 ) ) |
| 201 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
| 202 |
201
|
fvresd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ‘ 𝑥 ) = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) ) |
| 203 |
195
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑓 Fn 𝐼 ) |
| 204 |
163
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) |
| 205 |
204
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) |
| 206 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐼 ∈ Fin ) |
| 207 |
206
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝐼 ∈ Fin ) |
| 208 |
190
|
sselda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) |
| 209 |
|
fnfvof |
⊢ ( ( ( 𝑓 Fn 𝐼 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) ∧ ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝐼 ) ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ) ) |
| 210 |
203 205 207 208 209
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ) ) |
| 211 |
45
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → { 𝑌 } ⊆ 𝐼 ) |
| 212 |
201 10
|
eleqtrdi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) |
| 213 |
207 211 212 154
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 0 ) |
| 214 |
213
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑓 ‘ 𝑥 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) − 0 ) ) |
| 215 |
156
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝑓 : 𝐼 ⟶ ℕ0 ) |
| 216 |
215 208
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℕ0 ) |
| 217 |
216
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 218 |
217
|
subid1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑓 ‘ 𝑥 ) − 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 219 |
201
|
fvresd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑓 ↾ 𝐽 ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 220 |
218 219
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑓 ‘ 𝑥 ) − 0 ) = ( ( 𝑓 ↾ 𝐽 ) ‘ 𝑥 ) ) |
| 221 |
210 214 220
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) = ( ( 𝑓 ↾ 𝐽 ) ‘ 𝑥 ) ) |
| 222 |
200 202 221
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑧 ‘ 𝑥 ) = ( ( 𝑓 ↾ 𝐽 ) ‘ 𝑥 ) ) |
| 223 |
194 198 222
|
eqfnfvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝑧 = ( 𝑓 ↾ 𝐽 ) ) |
| 224 |
223
|
rneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ran 𝑧 = ran ( 𝑓 ↾ 𝐽 ) ) |
| 225 |
224
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran 𝑧 = ran ( 𝑓 ↾ 𝐽 ) ) |
| 226 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran 𝑧 ⊆ { 0 , 1 } ) |
| 227 |
225 226
|
eqsstrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ) |
| 228 |
60
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → Fun 𝑓 ) |
| 229 |
62
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → 𝑌 ∈ dom 𝑓 ) |
| 230 |
228 229 63
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ { 𝑌 } ) = { ( 𝑓 ‘ 𝑌 ) } ) |
| 231 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ‘ 𝑌 ) ∈ ℕ0 ) |
| 232 |
231
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ‘ 𝑌 ) ∈ ℂ ) |
| 233 |
123 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ { 0 , 1 } ) |
| 234 |
127 233
|
sseldd |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ ℕ0 ) |
| 235 |
234
|
nn0cnd |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ ℂ ) |
| 236 |
235
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ ℂ ) |
| 237 |
178
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝑌 ∈ 𝐼 ) |
| 238 |
|
fnfvof |
⊢ ( ( ( 𝑓 Fn 𝐼 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) ∧ ( 𝐼 ∈ Fin ∧ 𝑌 ∈ 𝐼 ) ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓 ‘ 𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) ) |
| 239 |
195 204 206 237 238
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓 ‘ 𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) ) |
| 240 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) |
| 241 |
239 240
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ‘ 𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) = 0 ) |
| 242 |
232 236 241
|
subeq0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ‘ 𝑌 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) |
| 243 |
|
snidg |
⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ { 𝑌 } ) |
| 244 |
9 243
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ { 𝑌 } ) |
| 245 |
|
ind1 |
⊢ ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼 ∧ 𝑌 ∈ { 𝑌 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 ) |
| 246 |
7 45 244 245
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 ) |
| 247 |
246
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 ) |
| 248 |
242 247
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ‘ 𝑌 ) = 1 ) |
| 249 |
248
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ( 𝑓 ‘ 𝑌 ) = 1 ) |
| 250 |
249
|
sneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → { ( 𝑓 ‘ 𝑌 ) } = { 1 } ) |
| 251 |
230 250
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ { 𝑌 } ) = { 1 } ) |
| 252 |
|
snsspr2 |
⊢ { 1 } ⊆ { 0 , 1 } |
| 253 |
251 252
|
eqsstrdi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ { 𝑌 } ) ⊆ { 0 , 1 } ) |
| 254 |
227 253
|
unssd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ( ran ( 𝑓 ↾ 𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) ⊆ { 0 , 1 } ) |
| 255 |
184 254
|
eqsstrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran 𝑓 ⊆ { 0 , 1 } ) |
| 256 |
223
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑧 = ( 𝑓 ↾ 𝐽 ) ) |
| 257 |
256
|
rneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑧 = ran ( 𝑓 ↾ 𝐽 ) ) |
| 258 |
|
rnresss |
⊢ ran ( 𝑓 ↾ 𝐽 ) ⊆ ran 𝑓 |
| 259 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑓 ⊆ { 0 , 1 } ) |
| 260 |
258 259
|
sstrid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ) |
| 261 |
257 260
|
eqsstrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑧 ⊆ { 0 , 1 } ) |
| 262 |
255 261
|
impbida |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ran 𝑧 ⊆ { 0 , 1 } ↔ ran 𝑓 ⊆ { 0 , 1 } ) ) |
| 263 |
223
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( 𝑧 supp 0 ) = ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) |
| 264 |
263
|
fveqeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) ) |
| 265 |
262 264
|
anbi12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) ↔ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) ) ) |
| 266 |
265
|
ifbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 267 |
|
breq1 |
⊢ ( ℎ = ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) → ( ℎ finSupp 0 ↔ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) finSupp 0 ) ) |
| 268 |
35
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ℕ0 ∈ V ) |
| 269 |
206 196
|
ssexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐽 ∈ V ) |
| 270 |
37 172
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 271 |
270
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 272 |
206 268 271
|
elmaprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) : 𝐼 ⟶ ℕ0 ) |
| 273 |
272 196
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 274 |
268 269 273
|
elmapdd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∈ ( ℕ0 ↑m 𝐽 ) ) |
| 275 |
|
breq1 |
⊢ ( ℎ = ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) → ( ℎ finSupp 0 ↔ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) finSupp 0 ) ) |
| 276 |
172
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 ) |
| 277 |
276 5
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 278 |
275 277
|
elrabrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) finSupp 0 ) |
| 279 |
77
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 0 ∈ ℕ0 ) |
| 280 |
278 279
|
fsuppres |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) finSupp 0 ) |
| 281 |
267 274 280
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) |
| 282 |
281 13
|
eleqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∈ 𝐶 ) |
| 283 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 284 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 285 |
283 284
|
ifcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 286 |
183 266 282 285
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 287 |
|
eqcom |
⊢ ( ( 𝐾 − 1 ) = ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) ↔ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) |
| 288 |
|
fz1ssfz0 |
⊢ ( 1 ... ( ♯ ‘ 𝐼 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐼 ) ) |
| 289 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝐼 ) ) ⊆ ℕ0 |
| 290 |
288 289
|
sstri |
⊢ ( 1 ... ( ♯ ‘ 𝐼 ) ) ⊆ ℕ0 |
| 291 |
290 12
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 292 |
291
|
nn0cnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 293 |
292
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐾 ∈ ℂ ) |
| 294 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 1 ∈ ℂ ) |
| 295 |
|
c0ex |
⊢ 0 ∈ V |
| 296 |
295
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 0 ∈ V ) |
| 297 |
40 34 296
|
fidmfisupp |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → 𝑓 finSupp 0 ) |
| 298 |
297 296
|
fsuppres |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ↾ 𝐽 ) finSupp 0 ) |
| 299 |
298
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 ↾ 𝐽 ) finSupp 0 ) |
| 300 |
299
|
fsuppimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∈ Fin ) |
| 301 |
|
hashcl |
⊢ ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∈ Fin → ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) ∈ ℕ0 ) |
| 302 |
300 301
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) ∈ ℕ0 ) |
| 303 |
302
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) ∈ ℂ ) |
| 304 |
293 294 303
|
subadd2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝐾 − 1 ) = ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) ↔ ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) + 1 ) = 𝐾 ) ) |
| 305 |
287 304
|
bitr3id |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ↔ ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) + 1 ) = 𝐾 ) ) |
| 306 |
80
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) ) |
| 307 |
89
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = if ( ( 𝑓 ‘ 𝑌 ) = 0 , ∅ , { 𝑌 } ) ) |
| 308 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) |
| 309 |
308
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( 𝑓 ‘ 𝑌 ) = 0 , ∅ , { 𝑌 } ) = { 𝑌 } ) |
| 310 |
307 309
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = { 𝑌 } ) |
| 311 |
310
|
uneq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) = ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) |
| 312 |
306 311
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) |
| 313 |
312
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) = ( ♯ ‘ ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) ) |
| 314 |
|
suppssdm |
⊢ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ⊆ dom ( 𝑓 ↾ 𝐽 ) |
| 315 |
|
resdmss |
⊢ dom ( 𝑓 ↾ 𝐽 ) ⊆ 𝐽 |
| 316 |
314 315
|
sstri |
⊢ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ⊆ 𝐽 |
| 317 |
316
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ⊆ 𝐽 ) |
| 318 |
10
|
eqimssi |
⊢ 𝐽 ⊆ ( 𝐼 ∖ { 𝑌 } ) |
| 319 |
|
ssdifsn |
⊢ ( 𝐽 ⊆ ( 𝐼 ∖ { 𝑌 } ) ↔ ( 𝐽 ⊆ 𝐼 ∧ ¬ 𝑌 ∈ 𝐽 ) ) |
| 320 |
318 319
|
mpbi |
⊢ ( 𝐽 ⊆ 𝐼 ∧ ¬ 𝑌 ∈ 𝐽 ) |
| 321 |
320
|
simpri |
⊢ ¬ 𝑌 ∈ 𝐽 |
| 322 |
321
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ 𝑌 ∈ 𝐽 ) |
| 323 |
317 322
|
ssneldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ 𝑌 ∈ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) |
| 324 |
|
hashunsng |
⊢ ( 𝑌 ∈ 𝐼 → ( ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∈ Fin ∧ ¬ 𝑌 ∈ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) → ( ♯ ‘ ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) = ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) + 1 ) ) ) |
| 325 |
324
|
imp |
⊢ ( ( 𝑌 ∈ 𝐼 ∧ ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∈ Fin ∧ ¬ 𝑌 ∈ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) ) → ( ♯ ‘ ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) = ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) + 1 ) ) |
| 326 |
237 300 323 325
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) = ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) + 1 ) ) |
| 327 |
313 326
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) = ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) + 1 ) ) |
| 328 |
327
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ↔ ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) + 1 ) = 𝐾 ) ) |
| 329 |
305 328
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) |
| 330 |
329
|
anbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) ↔ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) ) |
| 331 |
330
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 332 |
286 331
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 333 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑓 ⊆ { 0 , 1 } ) |
| 334 |
164
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑓 Fn 𝐼 ) |
| 335 |
178
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑌 ∈ 𝐼 ) |
| 336 |
334 335
|
fnfvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓 ‘ 𝑌 ) ∈ ran 𝑓 ) |
| 337 |
333 336
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓 ‘ 𝑌 ) ∈ { 0 , 1 } ) |
| 338 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) |
| 339 |
338
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓 ‘ 𝑌 ) ≠ 0 ) |
| 340 |
85
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( 𝑓 ‘ 𝑌 ) ∈ ℂ ) |
| 341 |
340
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓 ‘ 𝑌 ) ∈ ℂ ) |
| 342 |
|
1cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 1 ∈ ℂ ) |
| 343 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) |
| 344 |
163
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) |
| 345 |
130
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝐼 ∈ Fin ) |
| 346 |
334 344 345 335 238
|
syl22anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓 ‘ 𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) ) |
| 347 |
246
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 ) |
| 348 |
347
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝑓 ‘ 𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) = ( ( 𝑓 ‘ 𝑌 ) − 1 ) ) |
| 349 |
346 348
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓 ‘ 𝑌 ) − 1 ) ) |
| 350 |
349
|
eqeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ↔ ( ( 𝑓 ‘ 𝑌 ) − 1 ) = 0 ) ) |
| 351 |
343 350
|
mtbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( ( 𝑓 ‘ 𝑌 ) − 1 ) = 0 ) |
| 352 |
|
subeq0 |
⊢ ( ( ( 𝑓 ‘ 𝑌 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑓 ‘ 𝑌 ) − 1 ) = 0 ↔ ( 𝑓 ‘ 𝑌 ) = 1 ) ) |
| 353 |
352
|
notbid |
⊢ ( ( ( 𝑓 ‘ 𝑌 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ¬ ( ( 𝑓 ‘ 𝑌 ) − 1 ) = 0 ↔ ¬ ( 𝑓 ‘ 𝑌 ) = 1 ) ) |
| 354 |
353
|
biimpa |
⊢ ( ( ( ( 𝑓 ‘ 𝑌 ) ∈ ℂ ∧ 1 ∈ ℂ ) ∧ ¬ ( ( 𝑓 ‘ 𝑌 ) − 1 ) = 0 ) → ¬ ( 𝑓 ‘ 𝑌 ) = 1 ) |
| 355 |
341 342 351 354
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( 𝑓 ‘ 𝑌 ) = 1 ) |
| 356 |
355
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓 ‘ 𝑌 ) ≠ 1 ) |
| 357 |
339 356
|
nelprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( 𝑓 ‘ 𝑌 ) ∈ { 0 , 1 } ) |
| 358 |
337 357
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ ran 𝑓 ⊆ { 0 , 1 } ) |
| 359 |
358
|
intnanrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) |
| 360 |
359
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 361 |
360
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 0g ‘ 𝑅 ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 362 |
332 361
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → if ( ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 , ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 363 |
176 180 362
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 364 |
174 363
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ¬ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 365 |
100 364
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) , ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 366 |
14 365
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g ‘ 𝑅 ) if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 367 |
366
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐷 ↦ ( if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g ‘ 𝑅 ) if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 368 |
1 7 8
|
mplringd |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 369 |
1 2 102 7 8 9
|
mvrcl |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
| 370 |
102 4 368 369 118
|
ringcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 371 |
6
|
fveq1i |
⊢ ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ 𝐾 ) ) |
| 372 |
11
|
fveq1i |
⊢ ( 𝐸 ‘ 𝐾 ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) |
| 373 |
13 111 8 291 105
|
esplympl |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 374 |
372 373
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 375 |
107 374
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ 𝐾 ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 376 |
371 375
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 377 |
1 102 16 3 370 376
|
mpladd |
⊢ ( 𝜑 → ( ( ( 𝑉 ‘ 𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) + ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) ) = ( ( ( 𝑉 ‘ 𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) ) ) |
| 378 |
2
|
fveq1i |
⊢ ( 𝑉 ‘ 𝑌 ) = ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) |
| 379 |
|
eqid |
⊢ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) |
| 380 |
1 378 102 4 17 5 379 7 9 8 118
|
mplmulmvr |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) ) |
| 381 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ) |
| 382 |
13 111 8 291 17 20
|
esplyfval3 |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 383 |
372 382
|
eqtrid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐾 ) = ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 384 |
381 383
|
fveq12d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 385 |
382 373
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 386 |
5 17 7 8 9 10 105 385
|
extvfv |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ ( 𝑓 ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 387 |
|
rneq |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝐽 ) → ran 𝑔 = ran ( 𝑓 ↾ 𝐽 ) ) |
| 388 |
387
|
sseq1d |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝐽 ) → ( ran 𝑔 ⊆ { 0 , 1 } ↔ ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ) ) |
| 389 |
|
oveq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝐽 ) → ( 𝑔 supp 0 ) = ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) |
| 390 |
389
|
fveqeq2d |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝐽 ) → ( ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ↔ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) ) |
| 391 |
388 390
|
anbi12d |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝐽 ) → ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) ↔ ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) ) ) |
| 392 |
391
|
ifbid |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝐽 ) → if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 393 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 394 |
|
breq1 |
⊢ ( ℎ = ( 𝑓 ↾ 𝐽 ) → ( ℎ finSupp 0 ↔ ( 𝑓 ↾ 𝐽 ) finSupp 0 ) ) |
| 395 |
35
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ℕ0 ∈ V ) |
| 396 |
111
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝐽 ∈ Fin ) |
| 397 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝑓 : 𝐼 ⟶ ℕ0 ) |
| 398 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → 𝐽 ⊆ 𝐼 ) |
| 399 |
397 398
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 400 |
395 396 399
|
elmapdd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ↾ 𝐽 ) ∈ ( ℕ0 ↑m 𝐽 ) ) |
| 401 |
298
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ↾ 𝐽 ) finSupp 0 ) |
| 402 |
394 400 401
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ↾ 𝐽 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) |
| 403 |
402 13
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 𝑓 ↾ 𝐽 ) ∈ 𝐶 ) |
| 404 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 1r ‘ 𝑅 ) ∈ V ) |
| 405 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 406 |
404 405
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
| 407 |
392 393 403 406
|
fvmptd4 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑓 ‘ 𝑌 ) = 0 ) → ( ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ ( 𝑓 ↾ 𝐽 ) ) = if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 408 |
407
|
ifeq1da |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ ( 𝑓 ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) = if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
| 409 |
408
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( ( 𝑔 ∈ 𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ ( 𝑓 ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 410 |
384 386 409
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 411 |
380 410
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑉 ‘ 𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) ) = ( ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 412 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 413 |
5 412
|
rabex2 |
⊢ 𝐷 ∈ V |
| 414 |
413
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 415 |
|
nfv |
⊢ Ⅎ 𝑓 𝜑 |
| 416 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ∈ V ) |
| 417 |
26 416
|
ifexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ∈ V ) |
| 418 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) |
| 419 |
415 417 418
|
fnmptd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) Fn 𝐷 ) |
| 420 |
27 26
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐷 ) → if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 421 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
| 422 |
415 420 421
|
fnmptd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) Fn 𝐷 ) |
| 423 |
|
ofmpteq |
⊢ ( ( 𝐷 ∈ V ∧ ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) Fn 𝐷 ∧ ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) Fn 𝐷 ) → ( ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑓 ∈ 𝐷 ↦ ( if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g ‘ 𝑅 ) if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 424 |
414 419 422 423
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑓 ∈ 𝐷 ↦ if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑓 ∈ 𝐷 ↦ ( if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g ‘ 𝑅 ) if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 425 |
377 411 424
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑉 ‘ 𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) + ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) ) = ( 𝑓 ∈ 𝐷 ↦ ( if ( ( 𝑓 ‘ 𝑌 ) = 0 , ( 0g ‘ 𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓 ∘f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g ‘ 𝑅 ) if ( ( 𝑓 ‘ 𝑌 ) = 0 , if ( ( ran ( 𝑓 ↾ 𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓 ↾ 𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 426 |
5 7 8 291 17 20
|
esplyfval3 |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑓 ∈ 𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 427 |
367 425 426
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ( 𝑉 ‘ 𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) + ( 𝐺 ‘ ( 𝐸 ‘ 𝐾 ) ) ) ) |