Metamath Proof Explorer


Theorem esplyind

Description: A recursive formula for the elementary symmetric polynomials. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses esplyind.w 𝑊 = ( 𝐼 mPoly 𝑅 )
esplyind.v 𝑉 = ( 𝐼 mVar 𝑅 )
esplyind.p + = ( +g𝑊 )
esplyind.m · = ( .r𝑊 )
esplyind.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
esplyind.g 𝐺 = ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 )
esplyind.i ( 𝜑𝐼 ∈ Fin )
esplyind.r ( 𝜑𝑅 ∈ Ring )
esplyind.y ( 𝜑𝑌𝐼 )
esplyind.j 𝐽 = ( 𝐼 ∖ { 𝑌 } )
esplyind.e 𝐸 = ( 𝐽 eSymPoly 𝑅 )
esplyind.k ( 𝜑𝐾 ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) )
esplyind.1 𝐶 = { ∈ ( ℕ0m 𝐽 ) ∣ finSupp 0 }
Assertion esplyind ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) + ( 𝐺 ‘ ( 𝐸𝐾 ) ) ) )

Proof

Step Hyp Ref Expression
1 esplyind.w 𝑊 = ( 𝐼 mPoly 𝑅 )
2 esplyind.v 𝑉 = ( 𝐼 mVar 𝑅 )
3 esplyind.p + = ( +g𝑊 )
4 esplyind.m · = ( .r𝑊 )
5 esplyind.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
6 esplyind.g 𝐺 = ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 )
7 esplyind.i ( 𝜑𝐼 ∈ Fin )
8 esplyind.r ( 𝜑𝑅 ∈ Ring )
9 esplyind.y ( 𝜑𝑌𝐼 )
10 esplyind.j 𝐽 = ( 𝐼 ∖ { 𝑌 } )
11 esplyind.e 𝐸 = ( 𝐽 eSymPoly 𝑅 )
12 esplyind.k ( 𝜑𝐾 ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) )
13 esplyind.1 𝐶 = { ∈ ( ℕ0m 𝐽 ) ∣ finSupp 0 }
14 ovif12 ( if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g𝑅 ) if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) = if ( ( 𝑓𝑌 ) = 0 , ( ( 0g𝑅 ) ( +g𝑅 ) if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) , ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g𝑅 ) ( 0g𝑅 ) ) )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 eqid ( +g𝑅 ) = ( +g𝑅 )
17 eqid ( 0g𝑅 ) = ( 0g𝑅 )
18 8 ringgrpd ( 𝜑𝑅 ∈ Grp )
19 18 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → 𝑅 ∈ Grp )
20 eqid ( 1r𝑅 ) = ( 1r𝑅 )
21 15 20 8 ringidcld ( 𝜑 → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
22 21 adantr ( ( 𝜑𝑓𝐷 ) → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
23 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
24 15 17 grpidcl ( 𝑅 ∈ Grp → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
25 8 23 24 3syl ( 𝜑 → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
26 25 adantr ( ( 𝜑𝑓𝐷 ) → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
27 22 26 ifcld ( ( 𝜑𝑓𝐷 ) → if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
28 27 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
29 15 16 17 19 28 grplidd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( 0g𝑅 ) ( +g𝑅 ) if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
30 snsspr1 { 0 } ⊆ { 0 , 1 }
31 30 biantru ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ↔ ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ { 0 } ⊆ { 0 , 1 } ) )
32 unss ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ { 0 } ⊆ { 0 , 1 } ) ↔ ( ran ( 𝑓𝐽 ) ∪ { 0 } ) ⊆ { 0 , 1 } )
33 31 32 bitri ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ↔ ( ran ( 𝑓𝐽 ) ∪ { 0 } ) ⊆ { 0 , 1 } )
34 7 adantr ( ( 𝜑𝑓𝐷 ) → 𝐼 ∈ Fin )
35 nn0ex 0 ∈ V
36 35 a1i ( ( 𝜑𝑓𝐷 ) → ℕ0 ∈ V )
37 5 ssrab3 𝐷 ⊆ ( ℕ0m 𝐼 )
38 37 a1i ( 𝜑𝐷 ⊆ ( ℕ0m 𝐼 ) )
39 38 sselda ( ( 𝜑𝑓𝐷 ) → 𝑓 ∈ ( ℕ0m 𝐼 ) )
40 34 36 39 elmaprd ( ( 𝜑𝑓𝐷 ) → 𝑓 : 𝐼 ⟶ ℕ0 )
41 40 freld ( ( 𝜑𝑓𝐷 ) → Rel 𝑓 )
42 40 ffnd ( ( 𝜑𝑓𝐷 ) → 𝑓 Fn 𝐼 )
43 42 fndmd ( ( 𝜑𝑓𝐷 ) → dom 𝑓 = 𝐼 )
44 10 uneq1i ( 𝐽 ∪ { 𝑌 } ) = ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } )
45 9 snssd ( 𝜑 → { 𝑌 } ⊆ 𝐼 )
46 undifr ( { 𝑌 } ⊆ 𝐼 ↔ ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 )
47 45 46 sylib ( 𝜑 → ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 )
48 44 47 eqtr2id ( 𝜑𝐼 = ( 𝐽 ∪ { 𝑌 } ) )
49 48 adantr ( ( 𝜑𝑓𝐷 ) → 𝐼 = ( 𝐽 ∪ { 𝑌 } ) )
50 43 49 eqtrd ( ( 𝜑𝑓𝐷 ) → dom 𝑓 = ( 𝐽 ∪ { 𝑌 } ) )
51 10 ineq1i ( 𝐽 ∩ { 𝑌 } ) = ( ( 𝐼 ∖ { 𝑌 } ) ∩ { 𝑌 } )
52 disjdifr ( ( 𝐼 ∖ { 𝑌 } ) ∩ { 𝑌 } ) = ∅
53 51 52 eqtri ( 𝐽 ∩ { 𝑌 } ) = ∅
54 53 a1i ( ( 𝜑𝑓𝐷 ) → ( 𝐽 ∩ { 𝑌 } ) = ∅ )
55 reldisjun ( ( Rel 𝑓 ∧ dom 𝑓 = ( 𝐽 ∪ { 𝑌 } ) ∧ ( 𝐽 ∩ { 𝑌 } ) = ∅ ) → 𝑓 = ( ( 𝑓𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) )
56 41 50 54 55 syl3anc ( ( 𝜑𝑓𝐷 ) → 𝑓 = ( ( 𝑓𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) )
57 56 rneqd ( ( 𝜑𝑓𝐷 ) → ran 𝑓 = ran ( ( 𝑓𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) )
58 rnun ran ( ( 𝑓𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) = ( ran ( 𝑓𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) )
59 57 58 eqtr2di ( ( 𝜑𝑓𝐷 ) → ( ran ( 𝑓𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) = ran 𝑓 )
60 42 fnfund ( ( 𝜑𝑓𝐷 ) → Fun 𝑓 )
61 9 adantr ( ( 𝜑𝑓𝐷 ) → 𝑌𝐼 )
62 61 43 eleqtrrd ( ( 𝜑𝑓𝐷 ) → 𝑌 ∈ dom 𝑓 )
63 rnressnsn ( ( Fun 𝑓𝑌 ∈ dom 𝑓 ) → ran ( 𝑓 ↾ { 𝑌 } ) = { ( 𝑓𝑌 ) } )
64 60 62 63 syl2anc ( ( 𝜑𝑓𝐷 ) → ran ( 𝑓 ↾ { 𝑌 } ) = { ( 𝑓𝑌 ) } )
65 64 uneq2d ( ( 𝜑𝑓𝐷 ) → ( ran ( 𝑓𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) = ( ran ( 𝑓𝐽 ) ∪ { ( 𝑓𝑌 ) } ) )
66 59 65 eqtr3d ( ( 𝜑𝑓𝐷 ) → ran 𝑓 = ( ran ( 𝑓𝐽 ) ∪ { ( 𝑓𝑌 ) } ) )
67 66 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ran 𝑓 = ( ran ( 𝑓𝐽 ) ∪ { ( 𝑓𝑌 ) } ) )
68 simpr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑓𝑌 ) = 0 )
69 68 sneqd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → { ( 𝑓𝑌 ) } = { 0 } )
70 69 uneq2d ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ran ( 𝑓𝐽 ) ∪ { ( 𝑓𝑌 ) } ) = ( ran ( 𝑓𝐽 ) ∪ { 0 } ) )
71 67 70 eqtrd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ran 𝑓 = ( ran ( 𝑓𝐽 ) ∪ { 0 } ) )
72 71 sseq1d ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ran 𝑓 ⊆ { 0 , 1 } ↔ ( ran ( 𝑓𝐽 ) ∪ { 0 } ) ⊆ { 0 , 1 } ) )
73 33 72 bitr4id ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ↔ ran 𝑓 ⊆ { 0 , 1 } ) )
74 56 oveq1d ( ( 𝜑𝑓𝐷 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) supp 0 ) )
75 39 resexd ( ( 𝜑𝑓𝐷 ) → ( 𝑓𝐽 ) ∈ V )
76 39 resexd ( ( 𝜑𝑓𝐷 ) → ( 𝑓 ↾ { 𝑌 } ) ∈ V )
77 0nn0 0 ∈ ℕ0
78 77 a1i ( ( 𝜑𝑓𝐷 ) → 0 ∈ ℕ0 )
79 75 76 78 suppun2 ( ( 𝜑𝑓𝐷 ) → ( ( ( 𝑓𝐽 ) ∪ ( 𝑓 ↾ { 𝑌 } ) ) supp 0 ) = ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) )
80 74 79 eqtrd ( ( 𝜑𝑓𝐷 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) )
81 80 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) )
82 fnressn ( ( 𝑓 Fn 𝐼𝑌𝐼 ) → ( 𝑓 ↾ { 𝑌 } ) = { ⟨ 𝑌 , ( 𝑓𝑌 ) ⟩ } )
83 42 61 82 syl2anc ( ( 𝜑𝑓𝐷 ) → ( 𝑓 ↾ { 𝑌 } ) = { ⟨ 𝑌 , ( 𝑓𝑌 ) ⟩ } )
84 83 oveq1d ( ( 𝜑𝑓𝐷 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = ( { ⟨ 𝑌 , ( 𝑓𝑌 ) ⟩ } supp 0 ) )
85 40 61 ffvelcdmd ( ( 𝜑𝑓𝐷 ) → ( 𝑓𝑌 ) ∈ ℕ0 )
86 eqid { ⟨ 𝑌 , ( 𝑓𝑌 ) ⟩ } = { ⟨ 𝑌 , ( 𝑓𝑌 ) ⟩ }
87 86 suppsnop ( ( 𝑌𝐼 ∧ ( 𝑓𝑌 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( { ⟨ 𝑌 , ( 𝑓𝑌 ) ⟩ } supp 0 ) = if ( ( 𝑓𝑌 ) = 0 , ∅ , { 𝑌 } ) )
88 61 85 78 87 syl3anc ( ( 𝜑𝑓𝐷 ) → ( { ⟨ 𝑌 , ( 𝑓𝑌 ) ⟩ } supp 0 ) = if ( ( 𝑓𝑌 ) = 0 , ∅ , { 𝑌 } ) )
89 84 88 eqtrd ( ( 𝜑𝑓𝐷 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = if ( ( 𝑓𝑌 ) = 0 , ∅ , { 𝑌 } ) )
90 89 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = if ( ( 𝑓𝑌 ) = 0 , ∅ , { 𝑌 } ) )
91 68 iftrued ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → if ( ( 𝑓𝑌 ) = 0 , ∅ , { 𝑌 } ) = ∅ )
92 90 91 eqtrd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = ∅ )
93 92 uneq2d ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) = ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ∅ ) )
94 un0 ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ∅ ) = ( ( 𝑓𝐽 ) supp 0 )
95 93 94 eqtrdi ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) = ( ( 𝑓𝐽 ) supp 0 ) )
96 81 95 eqtr2d ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( 𝑓𝐽 ) supp 0 ) = ( 𝑓 supp 0 ) )
97 96 fveqeq2d ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ↔ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) )
98 73 97 anbi12d ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) ↔ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) )
99 98 ifbid ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
100 29 99 eqtrd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( 0g𝑅 ) ( +g𝑅 ) if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
101 18 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → 𝑅 ∈ Grp )
102 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
103 5 psrbasfsupp 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
104 6 fveq1i ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) )
105 eqid ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) )
106 1 fveq2i ( Base ‘ 𝑊 ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
107 5 17 7 8 15 10 105 9 106 extvfvalf ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) : ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ⟶ ( Base ‘ 𝑊 ) )
108 11 fveq1i ( 𝐸 ‘ ( 𝐾 − 1 ) ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 − 1 ) )
109 difssd ( 𝜑 → ( 𝐼 ∖ { 𝑌 } ) ⊆ 𝐼 )
110 10 109 eqsstrid ( 𝜑𝐽𝐼 )
111 7 110 ssfid ( 𝜑𝐽 ∈ Fin )
112 elfznn ( 𝐾 ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) → 𝐾 ∈ ℕ )
113 nnm1nn0 ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 )
114 12 112 113 3syl ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 )
115 13 111 8 114 105 esplympl ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 − 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
116 108 115 eqeltrid ( 𝜑 → ( 𝐸 ‘ ( 𝐾 − 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
117 107 116 ffvelcdmd ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ∈ ( Base ‘ 𝑊 ) )
118 104 117 eqeltrid ( 𝜑 → ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ∈ ( Base ‘ 𝑊 ) )
119 1 15 102 103 118 mplelf ( 𝜑 → ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
120 119 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
121 simplr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → 𝑓𝐷 )
122 indf ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } )
123 7 45 122 syl2anc ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } )
124 77 a1i ( 𝜑 → 0 ∈ ℕ0 )
125 1nn0 1 ∈ ℕ0
126 125 a1i ( 𝜑 → 1 ∈ ℕ0 )
127 124 126 prssd ( 𝜑 → { 0 , 1 } ⊆ ℕ0 )
128 123 127 fssd ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 )
129 128 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 )
130 7 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → 𝐼 ∈ Fin )
131 130 ad2antrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝐼 ∈ Fin )
132 45 ad4antr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → { 𝑌 } ⊆ 𝐼 )
133 simpr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑥 = 𝑌 )
134 velsn ( 𝑥 ∈ { 𝑌 } ↔ 𝑥 = 𝑌 )
135 133 134 sylibr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑥 ∈ { 𝑌 } )
136 ind1 ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼𝑥 ∈ { 𝑌 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 1 )
137 131 132 135 136 syl3anc ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 1 )
138 40 ad3antrrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑓 : 𝐼 ⟶ ℕ0 )
139 simplr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → 𝑥𝐼 )
140 138 139 ffvelcdmd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓𝑥 ) ∈ ℕ0 )
141 133 fveq2d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓𝑥 ) = ( 𝑓𝑌 ) )
142 simpllr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ¬ ( 𝑓𝑌 ) = 0 )
143 142 neqned ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓𝑌 ) ≠ 0 )
144 141 143 eqnetrd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓𝑥 ) ≠ 0 )
145 elnnne0 ( ( 𝑓𝑥 ) ∈ ℕ ↔ ( ( 𝑓𝑥 ) ∈ ℕ0 ∧ ( 𝑓𝑥 ) ≠ 0 ) )
146 140 144 145 sylanbrc ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ( 𝑓𝑥 ) ∈ ℕ )
147 146 nnge1d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → 1 ≤ ( 𝑓𝑥 ) )
148 137 147 eqbrtrd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥 = 𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓𝑥 ) )
149 130 ad2antrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → 𝐼 ∈ Fin )
150 45 ad4antr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → { 𝑌 } ⊆ 𝐼 )
151 simplr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → 𝑥𝐼 )
152 simpr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → 𝑥𝑌 )
153 151 152 eldifsnd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) )
154 ind0 ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 0 )
155 149 150 153 154 syl3anc ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 0 )
156 40 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → 𝑓 : 𝐼 ⟶ ℕ0 )
157 156 ffvelcdmda ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) → ( 𝑓𝑥 ) ∈ ℕ0 )
158 157 adantr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → ( 𝑓𝑥 ) ∈ ℕ0 )
159 158 nn0ge0d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → 0 ≤ ( 𝑓𝑥 ) )
160 155 159 eqbrtrd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) ∧ 𝑥𝑌 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓𝑥 ) )
161 148 160 pm2.61dane ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓𝑥 ) )
162 161 ralrimiva ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ∀ 𝑥𝐼 ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓𝑥 ) )
163 129 ffnd ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 )
164 42 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → 𝑓 Fn 𝐼 )
165 inidm ( 𝐼𝐼 ) = 𝐼
166 eqidd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) )
167 eqidd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ 𝑥𝐼 ) → ( 𝑓𝑥 ) = ( 𝑓𝑥 ) )
168 163 164 130 130 165 166 167 ofrfval ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r𝑓 ↔ ∀ 𝑥𝐼 ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ≤ ( 𝑓𝑥 ) ) )
169 162 168 mpbird ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r𝑓 )
170 103 psrbagcon ( ( 𝑓𝐷 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r𝑓 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 ∧ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∘r𝑓 ) )
171 170 simpld ( ( 𝑓𝐷 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ∘r𝑓 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 )
172 121 129 169 171 syl3anc ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 )
173 120 172 ffvelcdmd ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ∈ ( Base ‘ 𝑅 ) )
174 15 16 17 101 173 grpridd ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g𝑅 ) ( 0g𝑅 ) ) = ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) )
175 104 fveq1i ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) )
176 175 a1i ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) )
177 8 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → 𝑅 ∈ Ring )
178 9 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → 𝑌𝐼 )
179 116 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( 𝐸 ‘ ( 𝐾 − 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
180 5 17 130 177 178 10 105 179 172 extvfvv ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = if ( ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 , ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) , ( 0g𝑅 ) ) )
181 13 111 8 114 17 20 esplyfval3 ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 − 1 ) ) = ( 𝑧𝐶 ↦ if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
182 108 181 eqtrid ( 𝜑 → ( 𝐸 ‘ ( 𝐾 − 1 ) ) = ( 𝑧𝐶 ↦ if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
183 182 ad3antrrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝐸 ‘ ( 𝐾 − 1 ) ) = ( 𝑧𝐶 ↦ if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
184 59 ad4antr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ( ran ( 𝑓𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) = ran 𝑓 )
185 simpr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) )
186 123 ffnd ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 )
187 186 adantr ( ( 𝜑𝑓𝐷 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 )
188 42 187 34 34 165 offn ( ( 𝜑𝑓𝐷 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) Fn 𝐼 )
189 188 ad3antrrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) Fn 𝐼 )
190 110 ad4antr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝐽𝐼 )
191 189 190 fnssresd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) Fn 𝐽 )
192 fneq1 ( 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) → ( 𝑧 Fn 𝐽 ↔ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) Fn 𝐽 ) )
193 192 biimpar ( ( 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) Fn 𝐽 ) → 𝑧 Fn 𝐽 )
194 185 191 193 syl2anc ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝑧 Fn 𝐽 )
195 42 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝑓 Fn 𝐼 )
196 110 ad3antrrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐽𝐼 )
197 195 196 fnssresd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓𝐽 ) Fn 𝐽 )
198 197 adantr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( 𝑓𝐽 ) Fn 𝐽 )
199 simplr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) )
200 199 fveq1d ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( 𝑧𝑥 ) = ( ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ‘ 𝑥 ) )
201 simpr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → 𝑥𝐽 )
202 201 fvresd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ‘ 𝑥 ) = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) )
203 195 ad2antrr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → 𝑓 Fn 𝐼 )
204 163 adantr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 )
205 204 ad2antrr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 )
206 34 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐼 ∈ Fin )
207 206 ad2antrr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → 𝐼 ∈ Fin )
208 190 sselda ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → 𝑥𝐼 )
209 fnfvof ( ( ( 𝑓 Fn 𝐼 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) ∧ ( 𝐼 ∈ Fin ∧ 𝑥𝐼 ) ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) = ( ( 𝑓𝑥 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ) )
210 203 205 207 208 209 syl22anc ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) = ( ( 𝑓𝑥 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ) )
211 45 ad5antr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → { 𝑌 } ⊆ 𝐼 )
212 201 10 eleqtrdi ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → 𝑥 ∈ ( 𝐼 ∖ { 𝑌 } ) )
213 207 211 212 154 syl3anc ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) = 0 )
214 213 oveq2d ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( 𝑓𝑥 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑥 ) ) = ( ( 𝑓𝑥 ) − 0 ) )
215 156 ad3antrrr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → 𝑓 : 𝐼 ⟶ ℕ0 )
216 215 208 ffvelcdmd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( 𝑓𝑥 ) ∈ ℕ0 )
217 216 nn0cnd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( 𝑓𝑥 ) ∈ ℂ )
218 217 subid1d ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( 𝑓𝑥 ) − 0 ) = ( 𝑓𝑥 ) )
219 201 fvresd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( 𝑓𝐽 ) ‘ 𝑥 ) = ( 𝑓𝑥 ) )
220 218 219 eqtr4d ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( 𝑓𝑥 ) − 0 ) = ( ( 𝑓𝐽 ) ‘ 𝑥 ) )
221 210 214 220 3eqtrd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑥 ) = ( ( 𝑓𝐽 ) ‘ 𝑥 ) )
222 200 202 221 3eqtrd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ 𝑥𝐽 ) → ( 𝑧𝑥 ) = ( ( 𝑓𝐽 ) ‘ 𝑥 ) )
223 194 198 222 eqfnfvd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → 𝑧 = ( 𝑓𝐽 ) )
224 223 rneqd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ran 𝑧 = ran ( 𝑓𝐽 ) )
225 224 adantr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran 𝑧 = ran ( 𝑓𝐽 ) )
226 simpr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran 𝑧 ⊆ { 0 , 1 } )
227 225 226 eqsstrrd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } )
228 60 ad4antr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → Fun 𝑓 )
229 62 ad4antr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → 𝑌 ∈ dom 𝑓 )
230 228 229 63 syl2anc ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ { 𝑌 } ) = { ( 𝑓𝑌 ) } )
231 85 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓𝑌 ) ∈ ℕ0 )
232 231 nn0cnd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓𝑌 ) ∈ ℂ )
233 123 9 ffvelcdmd ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ { 0 , 1 } )
234 127 233 sseldd ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ ℕ0 )
235 234 nn0cnd ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ ℂ )
236 235 ad3antrrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ∈ ℂ )
237 178 adantr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝑌𝐼 )
238 fnfvof ( ( ( 𝑓 Fn 𝐼 ∧ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 ) ∧ ( 𝐼 ∈ Fin ∧ 𝑌𝐼 ) ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) )
239 195 204 206 237 238 syl22anc ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) )
240 simpr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 )
241 239 240 eqtr3d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) = 0 )
242 232 236 241 subeq0d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓𝑌 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) )
243 snidg ( 𝑌𝐼𝑌 ∈ { 𝑌 } )
244 9 243 syl ( 𝜑𝑌 ∈ { 𝑌 } )
245 ind1 ( ( 𝐼 ∈ Fin ∧ { 𝑌 } ⊆ 𝐼𝑌 ∈ { 𝑌 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 )
246 7 45 244 245 syl3anc ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 )
247 246 ad3antrrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 )
248 242 247 eqtrd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓𝑌 ) = 1 )
249 248 ad2antrr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ( 𝑓𝑌 ) = 1 )
250 249 sneqd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → { ( 𝑓𝑌 ) } = { 1 } )
251 230 250 eqtrd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ { 𝑌 } ) = { 1 } )
252 snsspr2 { 1 } ⊆ { 0 , 1 }
253 251 252 eqsstrdi ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran ( 𝑓 ↾ { 𝑌 } ) ⊆ { 0 , 1 } )
254 227 253 unssd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ( ran ( 𝑓𝐽 ) ∪ ran ( 𝑓 ↾ { 𝑌 } ) ) ⊆ { 0 , 1 } )
255 184 254 eqsstrrd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑧 ⊆ { 0 , 1 } ) → ran 𝑓 ⊆ { 0 , 1 } )
256 223 adantr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑧 = ( 𝑓𝐽 ) )
257 256 rneqd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑧 = ran ( 𝑓𝐽 ) )
258 rnresss ran ( 𝑓𝐽 ) ⊆ ran 𝑓
259 simpr ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑓 ⊆ { 0 , 1 } )
260 258 259 sstrid ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } )
261 257 260 eqsstrd ( ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑧 ⊆ { 0 , 1 } )
262 255 261 impbida ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ran 𝑧 ⊆ { 0 , 1 } ↔ ran 𝑓 ⊆ { 0 , 1 } ) )
263 223 oveq1d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( 𝑧 supp 0 ) = ( ( 𝑓𝐽 ) supp 0 ) )
264 263 fveqeq2d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) )
265 262 264 anbi12d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) ↔ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) ) )
266 265 ifbid ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ 𝑧 = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) → if ( ( ran 𝑧 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑧 supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
267 breq1 ( = ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) → ( finSupp 0 ↔ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) finSupp 0 ) )
268 35 a1i ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ℕ0 ∈ V )
269 206 196 ssexd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐽 ∈ V )
270 37 172 sselid ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ ( ℕ0m 𝐼 ) )
271 270 adantr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ ( ℕ0m 𝐼 ) )
272 206 268 271 elmaprd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) : 𝐼 ⟶ ℕ0 )
273 272 196 fssresd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 )
274 268 269 273 elmapdd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∈ ( ℕ0m 𝐽 ) )
275 breq1 ( = ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) → ( finSupp 0 ↔ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) finSupp 0 ) )
276 172 adantr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ 𝐷 )
277 276 5 eleqtrdi ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
278 275 277 elrabrd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) finSupp 0 )
279 77 a1i ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 0 ∈ ℕ0 )
280 278 279 fsuppres ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) finSupp 0 )
281 267 274 280 elrabd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∈ { ∈ ( ℕ0m 𝐽 ) ∣ finSupp 0 } )
282 281 13 eleqtrrdi ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ∈ 𝐶 )
283 22 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
284 26 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
285 283 284 ifcld ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
286 183 266 282 285 fvmptd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
287 eqcom ( ( 𝐾 − 1 ) = ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) ↔ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) )
288 fz1ssfz0 ( 1 ... ( ♯ ‘ 𝐼 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐼 ) )
289 fz0ssnn0 ( 0 ... ( ♯ ‘ 𝐼 ) ) ⊆ ℕ0
290 288 289 sstri ( 1 ... ( ♯ ‘ 𝐼 ) ) ⊆ ℕ0
291 290 12 sselid ( 𝜑𝐾 ∈ ℕ0 )
292 291 nn0cnd ( 𝜑𝐾 ∈ ℂ )
293 292 ad3antrrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 𝐾 ∈ ℂ )
294 1cnd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → 1 ∈ ℂ )
295 c0ex 0 ∈ V
296 295 a1i ( ( 𝜑𝑓𝐷 ) → 0 ∈ V )
297 40 34 296 fidmfisupp ( ( 𝜑𝑓𝐷 ) → 𝑓 finSupp 0 )
298 297 296 fsuppres ( ( 𝜑𝑓𝐷 ) → ( 𝑓𝐽 ) finSupp 0 )
299 298 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓𝐽 ) finSupp 0 )
300 299 fsuppimpd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓𝐽 ) supp 0 ) ∈ Fin )
301 hashcl ( ( ( 𝑓𝐽 ) supp 0 ) ∈ Fin → ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) ∈ ℕ0 )
302 300 301 syl ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) ∈ ℕ0 )
303 302 nn0cnd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) ∈ ℂ )
304 293 294 303 subadd2d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝐾 − 1 ) = ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) ↔ ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) + 1 ) = 𝐾 ) )
305 287 304 bitr3id ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ↔ ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) + 1 ) = 𝐾 ) )
306 80 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) )
307 89 ad2antrr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = if ( ( 𝑓𝑌 ) = 0 , ∅ , { 𝑌 } ) )
308 simplr ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ ( 𝑓𝑌 ) = 0 )
309 308 iffalsed ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( 𝑓𝑌 ) = 0 , ∅ , { 𝑌 } ) = { 𝑌 } )
310 307 309 eqtrd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) = { 𝑌 } )
311 310 uneq2d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ( 𝑓𝐽 ) supp 0 ) ∪ ( ( 𝑓 ↾ { 𝑌 } ) supp 0 ) ) = ( ( ( 𝑓𝐽 ) supp 0 ) ∪ { 𝑌 } ) )
312 306 311 eqtrd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 𝑓 supp 0 ) = ( ( ( 𝑓𝐽 ) supp 0 ) ∪ { 𝑌 } ) )
313 312 fveq2d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) = ( ♯ ‘ ( ( ( 𝑓𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) )
314 suppssdm ( ( 𝑓𝐽 ) supp 0 ) ⊆ dom ( 𝑓𝐽 )
315 resdmss dom ( 𝑓𝐽 ) ⊆ 𝐽
316 314 315 sstri ( ( 𝑓𝐽 ) supp 0 ) ⊆ 𝐽
317 316 a1i ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝑓𝐽 ) supp 0 ) ⊆ 𝐽 )
318 10 eqimssi 𝐽 ⊆ ( 𝐼 ∖ { 𝑌 } )
319 ssdifsn ( 𝐽 ⊆ ( 𝐼 ∖ { 𝑌 } ) ↔ ( 𝐽𝐼 ∧ ¬ 𝑌𝐽 ) )
320 318 319 mpbi ( 𝐽𝐼 ∧ ¬ 𝑌𝐽 )
321 320 simpri ¬ 𝑌𝐽
322 321 a1i ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ 𝑌𝐽 )
323 317 322 ssneldd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ 𝑌 ∈ ( ( 𝑓𝐽 ) supp 0 ) )
324 hashunsng ( 𝑌𝐼 → ( ( ( ( 𝑓𝐽 ) supp 0 ) ∈ Fin ∧ ¬ 𝑌 ∈ ( ( 𝑓𝐽 ) supp 0 ) ) → ( ♯ ‘ ( ( ( 𝑓𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) = ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) + 1 ) ) )
325 324 imp ( ( 𝑌𝐼 ∧ ( ( ( 𝑓𝐽 ) supp 0 ) ∈ Fin ∧ ¬ 𝑌 ∈ ( ( 𝑓𝐽 ) supp 0 ) ) ) → ( ♯ ‘ ( ( ( 𝑓𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) = ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) + 1 ) )
326 237 300 323 325 syl12anc ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( ( ( 𝑓𝐽 ) supp 0 ) ∪ { 𝑌 } ) ) = ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) + 1 ) )
327 313 326 eqtrd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ♯ ‘ ( 𝑓 supp 0 ) ) = ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) + 1 ) )
328 327 eqeq1d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ↔ ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) + 1 ) = 𝐾 ) )
329 305 328 bitr4d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) )
330 329 anbi2d ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) ↔ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) ) )
331 330 ifbid ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = ( 𝐾 − 1 ) ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
332 286 331 eqtrd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
333 simpr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ran 𝑓 ⊆ { 0 , 1 } )
334 164 ad2antrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑓 Fn 𝐼 )
335 178 ad2antrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝑌𝐼 )
336 334 335 fnfvelrnd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓𝑌 ) ∈ ran 𝑓 )
337 333 336 sseldd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓𝑌 ) ∈ { 0 , 1 } )
338 simpllr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( 𝑓𝑌 ) = 0 )
339 338 neqned ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓𝑌 ) ≠ 0 )
340 85 nn0cnd ( ( 𝜑𝑓𝐷 ) → ( 𝑓𝑌 ) ∈ ℂ )
341 340 ad3antrrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓𝑌 ) ∈ ℂ )
342 1cnd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 1 ∈ ℂ )
343 simplr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 )
344 163 ad2antrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) Fn 𝐼 )
345 130 ad2antrr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → 𝐼 ∈ Fin )
346 334 344 345 335 238 syl22anc ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) )
347 246 ad4antr ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 )
348 347 oveq2d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝑓𝑌 ) − ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) ) = ( ( 𝑓𝑌 ) − 1 ) )
349 346 348 eqtrd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = ( ( 𝑓𝑌 ) − 1 ) )
350 349 eqeq1d ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ↔ ( ( 𝑓𝑌 ) − 1 ) = 0 ) )
351 343 350 mtbid ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( ( 𝑓𝑌 ) − 1 ) = 0 )
352 subeq0 ( ( ( 𝑓𝑌 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑓𝑌 ) − 1 ) = 0 ↔ ( 𝑓𝑌 ) = 1 ) )
353 352 notbid ( ( ( 𝑓𝑌 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ¬ ( ( 𝑓𝑌 ) − 1 ) = 0 ↔ ¬ ( 𝑓𝑌 ) = 1 ) )
354 353 biimpa ( ( ( ( 𝑓𝑌 ) ∈ ℂ ∧ 1 ∈ ℂ ) ∧ ¬ ( ( 𝑓𝑌 ) − 1 ) = 0 ) → ¬ ( 𝑓𝑌 ) = 1 )
355 341 342 351 354 syl21anc ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( 𝑓𝑌 ) = 1 )
356 355 neqned ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( 𝑓𝑌 ) ≠ 1 )
357 339 356 nelprd ( ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ¬ ( 𝑓𝑌 ) ∈ { 0 , 1 } )
358 337 357 pm2.65da ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ ran 𝑓 ⊆ { 0 , 1 } )
359 358 intnanrd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ¬ ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) )
360 359 iffalsed ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = ( 0g𝑅 ) )
361 360 eqcomd ( ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) ∧ ¬ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 ) → ( 0g𝑅 ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
362 332 361 ifeqda ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → if ( ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ‘ 𝑌 ) = 0 , ( ( 𝐸 ‘ ( 𝐾 − 1 ) ) ‘ ( ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ↾ 𝐽 ) ) , ( 0g𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
363 176 180 362 3eqtrd ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
364 174 363 eqtrd ( ( ( 𝜑𝑓𝐷 ) ∧ ¬ ( 𝑓𝑌 ) = 0 ) → ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g𝑅 ) ( 0g𝑅 ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
365 100 364 ifeqda ( ( 𝜑𝑓𝐷 ) → if ( ( 𝑓𝑌 ) = 0 , ( ( 0g𝑅 ) ( +g𝑅 ) if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) , ( ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ( +g𝑅 ) ( 0g𝑅 ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
366 14 365 eqtrid ( ( 𝜑𝑓𝐷 ) → ( if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g𝑅 ) if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) = if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
367 366 mpteq2dva ( 𝜑 → ( 𝑓𝐷 ↦ ( if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g𝑅 ) if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) ) = ( 𝑓𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
368 1 7 8 mplringd ( 𝜑𝑊 ∈ Ring )
369 1 2 102 7 8 9 mvrcl ( 𝜑 → ( 𝑉𝑌 ) ∈ ( Base ‘ 𝑊 ) )
370 102 4 368 369 118 ringcld ( 𝜑 → ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) ∈ ( Base ‘ 𝑊 ) )
371 6 fveq1i ( 𝐺 ‘ ( 𝐸𝐾 ) ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸𝐾 ) )
372 11 fveq1i ( 𝐸𝐾 ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 )
373 13 111 8 291 105 esplympl ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
374 372 373 eqeltrid ( 𝜑 → ( 𝐸𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
375 107 374 ffvelcdmd ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸𝐾 ) ) ∈ ( Base ‘ 𝑊 ) )
376 371 375 eqeltrid ( 𝜑 → ( 𝐺 ‘ ( 𝐸𝐾 ) ) ∈ ( Base ‘ 𝑊 ) )
377 1 102 16 3 370 376 mpladd ( 𝜑 → ( ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) + ( 𝐺 ‘ ( 𝐸𝐾 ) ) ) = ( ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) ∘f ( +g𝑅 ) ( 𝐺 ‘ ( 𝐸𝐾 ) ) ) )
378 2 fveq1i ( 𝑉𝑌 ) = ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 )
379 eqid ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } )
380 1 378 102 4 17 5 379 7 9 8 118 mplmulmvr ( 𝜑 → ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) = ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) )
381 6 a1i ( 𝜑𝐺 = ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) )
382 13 111 8 291 17 20 esplyfval3 ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
383 372 382 eqtrid ( 𝜑 → ( 𝐸𝐾 ) = ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
384 381 383 fveq12d ( 𝜑 → ( 𝐺 ‘ ( 𝐸𝐾 ) ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) )
385 382 373 eqeltrrd ( 𝜑 → ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
386 5 17 7 8 9 10 105 385 extvfv ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ‘ ( 𝑓𝐽 ) ) , ( 0g𝑅 ) ) ) )
387 rneq ( 𝑔 = ( 𝑓𝐽 ) → ran 𝑔 = ran ( 𝑓𝐽 ) )
388 387 sseq1d ( 𝑔 = ( 𝑓𝐽 ) → ( ran 𝑔 ⊆ { 0 , 1 } ↔ ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ) )
389 oveq1 ( 𝑔 = ( 𝑓𝐽 ) → ( 𝑔 supp 0 ) = ( ( 𝑓𝐽 ) supp 0 ) )
390 389 fveqeq2d ( 𝑔 = ( 𝑓𝐽 ) → ( ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ↔ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) )
391 388 390 anbi12d ( 𝑔 = ( 𝑓𝐽 ) → ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) ↔ ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) ) )
392 391 ifbid ( 𝑔 = ( 𝑓𝐽 ) → if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
393 eqidd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
394 breq1 ( = ( 𝑓𝐽 ) → ( finSupp 0 ↔ ( 𝑓𝐽 ) finSupp 0 ) )
395 35 a1i ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ℕ0 ∈ V )
396 111 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → 𝐽 ∈ Fin )
397 40 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → 𝑓 : 𝐼 ⟶ ℕ0 )
398 110 ad2antrr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → 𝐽𝐼 )
399 397 398 fssresd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑓𝐽 ) : 𝐽 ⟶ ℕ0 )
400 395 396 399 elmapdd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑓𝐽 ) ∈ ( ℕ0m 𝐽 ) )
401 298 adantr ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑓𝐽 ) finSupp 0 )
402 394 400 401 elrabd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑓𝐽 ) ∈ { ∈ ( ℕ0m 𝐽 ) ∣ finSupp 0 } )
403 402 13 eleqtrrdi ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 𝑓𝐽 ) ∈ 𝐶 )
404 fvexd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 1r𝑅 ) ∈ V )
405 fvexd ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( 0g𝑅 ) ∈ V )
406 404 405 ifcld ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ V )
407 392 393 403 406 fvmptd4 ( ( ( 𝜑𝑓𝐷 ) ∧ ( 𝑓𝑌 ) = 0 ) → ( ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ‘ ( 𝑓𝐽 ) ) = if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
408 407 ifeq1da ( ( 𝜑𝑓𝐷 ) → if ( ( 𝑓𝑌 ) = 0 , ( ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ‘ ( 𝑓𝐽 ) ) , ( 0g𝑅 ) ) = if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) )
409 408 mpteq2dva ( 𝜑 → ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( ( 𝑔𝐶 ↦ if ( ( ran 𝑔 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑔 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ‘ ( 𝑓𝐽 ) ) , ( 0g𝑅 ) ) ) = ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) )
410 384 386 409 3eqtrd ( 𝜑 → ( 𝐺 ‘ ( 𝐸𝐾 ) ) = ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) )
411 380 410 oveq12d ( 𝜑 → ( ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) ∘f ( +g𝑅 ) ( 𝐺 ‘ ( 𝐸𝐾 ) ) ) = ( ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) ∘f ( +g𝑅 ) ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) ) )
412 ovex ( ℕ0m 𝐼 ) ∈ V
413 5 412 rabex2 𝐷 ∈ V
414 413 a1i ( 𝜑𝐷 ∈ V )
415 nfv 𝑓 𝜑
416 fvexd ( ( 𝜑𝑓𝐷 ) → ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ∈ V )
417 26 416 ifexd ( ( 𝜑𝑓𝐷 ) → if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ∈ V )
418 eqid ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) = ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) )
419 415 417 418 fnmptd ( 𝜑 → ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) Fn 𝐷 )
420 27 26 ifcld ( ( 𝜑𝑓𝐷 ) → if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
421 eqid ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) = ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) )
422 415 420 421 fnmptd ( 𝜑 → ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) Fn 𝐷 )
423 ofmpteq ( ( 𝐷 ∈ V ∧ ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) Fn 𝐷 ∧ ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) Fn 𝐷 ) → ( ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) ∘f ( +g𝑅 ) ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) ) = ( 𝑓𝐷 ↦ ( if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g𝑅 ) if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) ) )
424 414 419 422 423 syl3anc ( 𝜑 → ( ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ) ∘f ( +g𝑅 ) ( 𝑓𝐷 ↦ if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) ) = ( 𝑓𝐷 ↦ ( if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g𝑅 ) if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) ) )
425 377 411 424 3eqtrd ( 𝜑 → ( ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) + ( 𝐺 ‘ ( 𝐸𝐾 ) ) ) = ( 𝑓𝐷 ↦ ( if ( ( 𝑓𝑌 ) = 0 , ( 0g𝑅 ) , ( ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ‘ ( 𝑓f − ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ) ) ) ( +g𝑅 ) if ( ( 𝑓𝑌 ) = 0 , if ( ( ran ( 𝑓𝐽 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑓𝐽 ) supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) , ( 0g𝑅 ) ) ) ) )
426 5 7 8 291 17 20 esplyfval3 ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( 𝑓𝐷 ↦ if ( ( ran 𝑓 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑓 supp 0 ) ) = 𝐾 ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
427 367 425 426 3eqtr4rd ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ( 𝑉𝑌 ) · ( 𝐺 ‘ ( 𝐸 ‘ ( 𝐾 − 1 ) ) ) ) + ( 𝐺 ‘ ( 𝐸𝐾 ) ) ) )