Metamath Proof Explorer


Theorem extvfvv

Description: The "variable extension" function evaluated for converting a given polynomial F by adding a variable with index A . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses extvval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
extvval.1 0 = ( 0g𝑅 )
extvval.i ( 𝜑𝐼𝑉 )
extvval.r ( 𝜑𝑅𝑊 )
extvfval.a ( 𝜑𝐴𝐼 )
extvfval.j 𝐽 = ( 𝐼 ∖ { 𝐴 } )
extvfval.m 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) )
extvfv.1 ( 𝜑𝐹𝑀 )
extvfvv.1 ( 𝜑𝑋𝐷 )
Assertion extvfvv ( 𝜑 → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ‘ 𝑋 ) = if ( ( 𝑋𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋𝐽 ) ) , 0 ) )

Proof

Step Hyp Ref Expression
1 extvval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
2 extvval.1 0 = ( 0g𝑅 )
3 extvval.i ( 𝜑𝐼𝑉 )
4 extvval.r ( 𝜑𝑅𝑊 )
5 extvfval.a ( 𝜑𝐴𝐼 )
6 extvfval.j 𝐽 = ( 𝐼 ∖ { 𝐴 } )
7 extvfval.m 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) )
8 extvfv.1 ( 𝜑𝐹𝑀 )
9 extvfvv.1 ( 𝜑𝑋𝐷 )
10 fveq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴 ) = ( 𝑋𝐴 ) )
11 10 eqeq1d ( 𝑥 = 𝑋 → ( ( 𝑥𝐴 ) = 0 ↔ ( 𝑋𝐴 ) = 0 ) )
12 reseq1 ( 𝑥 = 𝑋 → ( 𝑥𝐽 ) = ( 𝑋𝐽 ) )
13 12 fveq2d ( 𝑥 = 𝑋 → ( 𝐹 ‘ ( 𝑥𝐽 ) ) = ( 𝐹 ‘ ( 𝑋𝐽 ) ) )
14 11 13 ifbieq1d ( 𝑥 = 𝑋 → if ( ( 𝑥𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥𝐽 ) ) , 0 ) = if ( ( 𝑋𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋𝐽 ) ) , 0 ) )
15 1 2 3 4 5 6 7 8 extvfv ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) = ( 𝑥𝐷 ↦ if ( ( 𝑥𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥𝐽 ) ) , 0 ) ) )
16 fvexd ( 𝜑 → ( 𝐹 ‘ ( 𝑋𝐽 ) ) ∈ V )
17 2 fvexi 0 ∈ V
18 17 a1i ( 𝜑0 ∈ V )
19 16 18 ifcld ( 𝜑 → if ( ( 𝑋𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋𝐽 ) ) , 0 ) ∈ V )
20 14 15 9 19 fvmptd4 ( 𝜑 → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ‘ 𝑋 ) = if ( ( 𝑋𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋𝐽 ) ) , 0 ) )