| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
extvval.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
extvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
extvval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 5 |
|
extvfval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) |
| 6 |
|
extvfval.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝐴 } ) |
| 7 |
|
extvfval.m |
⊢ 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 8 |
|
extvfv.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑀 ) |
| 9 |
|
extvfvv.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 10 |
|
fveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ‘ 𝐴 ) = 0 ↔ ( 𝑋 ‘ 𝐴 ) = 0 ) ) |
| 12 |
|
reseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ↾ 𝐽 ) = ( 𝑋 ↾ 𝐽 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) = ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) ) |
| 14 |
11 13
|
ifbieq1d |
⊢ ( 𝑥 = 𝑋 → if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) = if ( ( 𝑋 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) , 0 ) ) |
| 15 |
1 2 3 4 5 6 7 8
|
extvfv |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) = ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) |
| 16 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) ∈ V ) |
| 17 |
2
|
fvexi |
⊢ 0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 19 |
16 18
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝑋 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) , 0 ) ∈ V ) |
| 20 |
14 15 9 19
|
fvmptd4 |
⊢ ( 𝜑 → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ‘ 𝑋 ) = if ( ( 𝑋 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) , 0 ) ) |