| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvval.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
extvval.1 |
|- .0. = ( 0g ` R ) |
| 3 |
|
extvval.i |
|- ( ph -> I e. V ) |
| 4 |
|
extvval.r |
|- ( ph -> R e. W ) |
| 5 |
|
extvfval.a |
|- ( ph -> A e. I ) |
| 6 |
|
extvfval.j |
|- J = ( I \ { A } ) |
| 7 |
|
extvfval.m |
|- M = ( Base ` ( J mPoly R ) ) |
| 8 |
|
extvfv.1 |
|- ( ph -> F e. M ) |
| 9 |
|
extvfvv.1 |
|- ( ph -> X e. D ) |
| 10 |
|
fveq1 |
|- ( x = X -> ( x ` A ) = ( X ` A ) ) |
| 11 |
10
|
eqeq1d |
|- ( x = X -> ( ( x ` A ) = 0 <-> ( X ` A ) = 0 ) ) |
| 12 |
|
reseq1 |
|- ( x = X -> ( x |` J ) = ( X |` J ) ) |
| 13 |
12
|
fveq2d |
|- ( x = X -> ( F ` ( x |` J ) ) = ( F ` ( X |` J ) ) ) |
| 14 |
11 13
|
ifbieq1d |
|- ( x = X -> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) ) |
| 15 |
1 2 3 4 5 6 7 8
|
extvfv |
|- ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) |
| 16 |
|
fvexd |
|- ( ph -> ( F ` ( X |` J ) ) e. _V ) |
| 17 |
2
|
fvexi |
|- .0. e. _V |
| 18 |
17
|
a1i |
|- ( ph -> .0. e. _V ) |
| 19 |
16 18
|
ifcld |
|- ( ph -> if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) e. _V ) |
| 20 |
14 15 9 19
|
fvmptd4 |
|- ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) ) |