Metamath Proof Explorer


Theorem extvfvv

Description: The "variable extension" function evaluated for converting a given polynomial F by adding a variable with index A . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses extvval.d
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 }
extvval.1
|- .0. = ( 0g ` R )
extvval.i
|- ( ph -> I e. V )
extvval.r
|- ( ph -> R e. W )
extvfval.a
|- ( ph -> A e. I )
extvfval.j
|- J = ( I \ { A } )
extvfval.m
|- M = ( Base ` ( J mPoly R ) )
extvfv.1
|- ( ph -> F e. M )
extvfvv.1
|- ( ph -> X e. D )
Assertion extvfvv
|- ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) )

Proof

Step Hyp Ref Expression
1 extvval.d
 |-  D = { h e. ( NN0 ^m I ) | h finSupp 0 }
2 extvval.1
 |-  .0. = ( 0g ` R )
3 extvval.i
 |-  ( ph -> I e. V )
4 extvval.r
 |-  ( ph -> R e. W )
5 extvfval.a
 |-  ( ph -> A e. I )
6 extvfval.j
 |-  J = ( I \ { A } )
7 extvfval.m
 |-  M = ( Base ` ( J mPoly R ) )
8 extvfv.1
 |-  ( ph -> F e. M )
9 extvfvv.1
 |-  ( ph -> X e. D )
10 fveq1
 |-  ( x = X -> ( x ` A ) = ( X ` A ) )
11 10 eqeq1d
 |-  ( x = X -> ( ( x ` A ) = 0 <-> ( X ` A ) = 0 ) )
12 reseq1
 |-  ( x = X -> ( x |` J ) = ( X |` J ) )
13 12 fveq2d
 |-  ( x = X -> ( F ` ( x |` J ) ) = ( F ` ( X |` J ) ) )
14 11 13 ifbieq1d
 |-  ( x = X -> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) )
15 1 2 3 4 5 6 7 8 extvfv
 |-  ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) )
16 fvexd
 |-  ( ph -> ( F ` ( X |` J ) ) e. _V )
17 2 fvexi
 |-  .0. e. _V
18 17 a1i
 |-  ( ph -> .0. e. _V )
19 16 18 ifcld
 |-  ( ph -> if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) e. _V )
20 14 15 9 19 fvmptd4
 |-  ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) )