| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvfvvcl.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
extvfvvcl.3 |
|- .0. = ( 0g ` R ) |
| 3 |
|
extvfvvcl.i |
|- ( ph -> I e. V ) |
| 4 |
|
extvfvvcl.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
extvfvvcl.b |
|- B = ( Base ` R ) |
| 6 |
|
extvfvvcl.j |
|- J = ( I \ { A } ) |
| 7 |
|
extvfvvcl.m |
|- M = ( Base ` ( J mPoly R ) ) |
| 8 |
|
extvfvvcl.1 |
|- ( ph -> A e. I ) |
| 9 |
|
extvfvvcl.f |
|- ( ph -> F e. M ) |
| 10 |
|
extvfvvcl.x |
|- ( ph -> X e. D ) |
| 11 |
1 2 3 4 8 6 7 9 10
|
extvfvv |
|- ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) = if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) ) |
| 12 |
|
eqid |
|- ( J mPoly R ) = ( J mPoly R ) |
| 13 |
|
eqid |
|- { h e. ( NN0 ^m J ) | h finSupp 0 } = { h e. ( NN0 ^m J ) | h finSupp 0 } |
| 14 |
13
|
psrbasfsupp |
|- { h e. ( NN0 ^m J ) | h finSupp 0 } = { h e. ( NN0 ^m J ) | ( `' h " NN ) e. Fin } |
| 15 |
12 5 7 14 9
|
mplelf |
|- ( ph -> F : { h e. ( NN0 ^m J ) | h finSupp 0 } --> B ) |
| 16 |
|
breq1 |
|- ( h = ( X |` J ) -> ( h finSupp 0 <-> ( X |` J ) finSupp 0 ) ) |
| 17 |
|
nn0ex |
|- NN0 e. _V |
| 18 |
17
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 19 |
3
|
difexd |
|- ( ph -> ( I \ { A } ) e. _V ) |
| 20 |
6 19
|
eqeltrid |
|- ( ph -> J e. _V ) |
| 21 |
1
|
ssrab3 |
|- D C_ ( NN0 ^m I ) |
| 22 |
21 10
|
sselid |
|- ( ph -> X e. ( NN0 ^m I ) ) |
| 23 |
3 18 22
|
elmaprd |
|- ( ph -> X : I --> NN0 ) |
| 24 |
|
difssd |
|- ( ph -> ( I \ { A } ) C_ I ) |
| 25 |
6 24
|
eqsstrid |
|- ( ph -> J C_ I ) |
| 26 |
23 25
|
fssresd |
|- ( ph -> ( X |` J ) : J --> NN0 ) |
| 27 |
18 20 26
|
elmapdd |
|- ( ph -> ( X |` J ) e. ( NN0 ^m J ) ) |
| 28 |
|
breq1 |
|- ( h = X -> ( h finSupp 0 <-> X finSupp 0 ) ) |
| 29 |
10 1
|
eleqtrdi |
|- ( ph -> X e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 30 |
28 29
|
elrabrd |
|- ( ph -> X finSupp 0 ) |
| 31 |
|
c0ex |
|- 0 e. _V |
| 32 |
31
|
a1i |
|- ( ph -> 0 e. _V ) |
| 33 |
30 32
|
fsuppres |
|- ( ph -> ( X |` J ) finSupp 0 ) |
| 34 |
16 27 33
|
elrabd |
|- ( ph -> ( X |` J ) e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) |
| 35 |
15 34
|
ffvelcdmd |
|- ( ph -> ( F ` ( X |` J ) ) e. B ) |
| 36 |
5 2
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 37 |
4 36
|
syl |
|- ( ph -> .0. e. B ) |
| 38 |
35 37
|
ifcld |
|- ( ph -> if ( ( X ` A ) = 0 , ( F ` ( X |` J ) ) , .0. ) e. B ) |
| 39 |
11 38
|
eqeltrd |
|- ( ph -> ( ( ( ( I extendVars R ) ` A ) ` F ) ` X ) e. B ) |