| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvfvvcl.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
extvfvvcl.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
extvfvvcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
extvfvvcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
extvfvvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
extvfvvcl.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝐴 } ) |
| 7 |
|
extvfvvcl.m |
⊢ 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 8 |
|
extvfvvcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) |
| 9 |
|
extvfvvcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑀 ) |
| 10 |
|
extvfvvcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 11 |
1 2 3 4 8 6 7 9 10
|
extvfvv |
⊢ ( 𝜑 → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ‘ 𝑋 ) = if ( ( 𝑋 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) , 0 ) ) |
| 12 |
|
eqid |
⊢ ( 𝐽 mPoly 𝑅 ) = ( 𝐽 mPoly 𝑅 ) |
| 13 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } |
| 14 |
13
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 15 |
12 5 7 14 9
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ⟶ 𝐵 ) |
| 16 |
|
breq1 |
⊢ ( ℎ = ( 𝑋 ↾ 𝐽 ) → ( ℎ finSupp 0 ↔ ( 𝑋 ↾ 𝐽 ) finSupp 0 ) ) |
| 17 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 19 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝐴 } ) ∈ V ) |
| 20 |
6 19
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 21 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) |
| 22 |
21 10
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 23 |
3 18 22
|
elmaprd |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 24 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝐴 } ) ⊆ 𝐼 ) |
| 25 |
6 24
|
eqsstrid |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 26 |
23 25
|
fssresd |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 27 |
18 20 26
|
elmapdd |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐽 ) ∈ ( ℕ0 ↑m 𝐽 ) ) |
| 28 |
|
breq1 |
⊢ ( ℎ = 𝑋 → ( ℎ finSupp 0 ↔ 𝑋 finSupp 0 ) ) |
| 29 |
10 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 30 |
28 29
|
elrabrd |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
| 31 |
|
c0ex |
⊢ 0 ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 33 |
30 32
|
fsuppres |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐽 ) finSupp 0 ) |
| 34 |
16 27 33
|
elrabd |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝐽 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) |
| 35 |
15 34
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) ∈ 𝐵 ) |
| 36 |
5 2
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 37 |
4 36
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 38 |
35 37
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝑋 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑋 ↾ 𝐽 ) ) , 0 ) ∈ 𝐵 ) |
| 39 |
11 38
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ‘ 𝑋 ) ∈ 𝐵 ) |