| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvfvvcl.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
extvfvvcl.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
extvfvvcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
extvfvvcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
extvfvvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
extvfvvcl.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝐴 } ) |
| 7 |
|
extvfvvcl.m |
⊢ 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 8 |
|
extvfvvcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) |
| 9 |
|
extvfvvcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑀 ) |
| 10 |
|
extvfvcl.n |
⊢ 𝑁 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 11 |
5
|
fvexi |
⊢ 𝐵 ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 13 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 14 |
1 13
|
rabex2 |
⊢ 𝐷 ∈ V |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 16 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ∈ V ) |
| 17 |
2
|
fvexi |
⊢ 0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 0 ∈ V ) |
| 19 |
16 18
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ∈ V ) |
| 20 |
1 2 3 4 8 6 7 9
|
extvfv |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) = ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) |
| 21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 23 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝐼 ) |
| 24 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐹 ∈ 𝑀 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 26 |
1 2 21 22 5 6 7 23 24 25
|
extvfvvcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 27 |
19 20 26
|
fmpt2d |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) : 𝐷 ⟶ 𝐵 ) |
| 28 |
12 15 27
|
elmapdd |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ∈ ( 𝐵 ↑m 𝐷 ) ) |
| 29 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 30 |
1
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 31 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 32 |
29 5 30 31 3
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝐵 ↑m 𝐷 ) ) |
| 33 |
28 32
|
eleqtrrd |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 34 |
15
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ∈ V ) |
| 35 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 36 |
19
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) : 𝐷 ⟶ V ) |
| 37 |
36
|
ffund |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) |
| 38 |
|
fveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ‘ 𝐴 ) = ( 𝑥 ‘ 𝐴 ) ) |
| 39 |
38
|
eqeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ‘ 𝐴 ) = 0 ↔ ( 𝑥 ‘ 𝐴 ) = 0 ) ) |
| 40 |
39
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } = { 𝑥 ∈ 𝐷 ∣ ( 𝑥 ‘ 𝐴 ) = 0 } |
| 41 |
40
|
partfun2 |
⊢ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) ∪ ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) ) |
| 42 |
41
|
oveq1i |
⊢ ( ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) supp 0 ) = ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) ∪ ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) ) supp 0 ) |
| 43 |
40 15
|
rabexd |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ∈ V ) |
| 44 |
43
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) ∈ V ) |
| 45 |
15
|
difexd |
⊢ ( 𝜑 → ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∈ V ) |
| 46 |
45
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) ∈ V ) |
| 47 |
44 46 35
|
suppun2 |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) ∪ ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) ) supp 0 ) = ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) ∪ ( ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) supp 0 ) ) ) |
| 48 |
42 47
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) supp 0 ) = ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) ∪ ( ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) supp 0 ) ) ) |
| 49 |
|
eqid |
⊢ ( 𝐽 mPoly 𝑅 ) = ( 𝐽 mPoly 𝑅 ) |
| 50 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } |
| 51 |
50
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 52 |
49 5 7 51 9
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ⟶ 𝐵 ) |
| 53 |
|
breq1 |
⊢ ( ℎ = ( 𝑥 ↾ 𝐽 ) → ( ℎ finSupp 0 ↔ ( 𝑥 ↾ 𝐽 ) finSupp 0 ) ) |
| 54 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 55 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → ℕ0 ∈ V ) |
| 56 |
3
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝐴 } ) ∈ V ) |
| 57 |
6 56
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 𝐽 ∈ V ) |
| 59 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 𝐼 ∈ 𝑉 ) |
| 60 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ⊆ 𝐷 |
| 61 |
|
ssrab2 |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 63 |
1 62
|
eqsstrid |
⊢ ( 𝜑 → 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 64 |
60 63
|
sstrid |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 65 |
64
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 66 |
59 55 65
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 67 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝐴 } ) ⊆ 𝐼 ) |
| 68 |
6 67
|
eqsstrid |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 𝐽 ⊆ 𝐼 ) |
| 70 |
66 69
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → ( 𝑥 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 71 |
55 58 70
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → ( 𝑥 ↾ 𝐽 ) ∈ ( ℕ0 ↑m 𝐽 ) ) |
| 72 |
60
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ⊆ 𝐷 ) |
| 73 |
72
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 𝑥 ∈ 𝐷 ) |
| 74 |
30
|
psrbagfsupp |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 finSupp 0 ) |
| 75 |
73 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 𝑥 finSupp 0 ) |
| 76 |
|
c0ex |
⊢ 0 ∈ V |
| 77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → 0 ∈ V ) |
| 78 |
75 77
|
fsuppres |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → ( 𝑥 ↾ 𝐽 ) finSupp 0 ) |
| 79 |
53 71 78
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → ( 𝑥 ↾ 𝐽 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) |
| 80 |
52 79
|
cofmpt |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) ) |
| 82 |
43
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ∈ V ) |
| 83 |
|
suppco |
⊢ ( ( 𝐹 ∈ 𝑀 ∧ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ∈ V ) → ( ( 𝐹 ∘ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) = ( ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) “ ( 𝐹 supp 0 ) ) ) |
| 84 |
9 82 83
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) = ( ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) “ ( 𝐹 supp 0 ) ) ) |
| 85 |
71
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) : { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ⟶ ( ℕ0 ↑m 𝐽 ) ) |
| 86 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) |
| 87 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) |
| 88 |
|
reseq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ↾ 𝐽 ) = ( 𝑢 ↾ 𝐽 ) ) |
| 89 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) |
| 90 |
89
|
resexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑢 ↾ 𝐽 ) ∈ V ) |
| 91 |
87 88 89 90
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( 𝑢 ↾ 𝐽 ) ) |
| 92 |
|
reseq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 ↾ 𝐽 ) = ( 𝑣 ↾ 𝐽 ) ) |
| 93 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) |
| 94 |
93
|
resexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑣 ↾ 𝐽 ) ∈ V ) |
| 95 |
87 92 93 94
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) = ( 𝑣 ↾ 𝐽 ) ) |
| 96 |
86 91 95
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑢 ↾ 𝐽 ) = ( 𝑣 ↾ 𝐽 ) ) |
| 97 |
6
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝐽 = ( 𝐼 ∖ { 𝐴 } ) ) |
| 98 |
97
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑢 ↾ 𝐽 ) = ( 𝑢 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ) |
| 99 |
97
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑣 ↾ 𝐽 ) = ( 𝑣 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ) |
| 100 |
96 98 99
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑢 ↾ ( 𝐼 ∖ { 𝐴 } ) ) = ( 𝑣 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ) |
| 101 |
|
fveq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 ‘ 𝐴 ) = ( 𝑢 ‘ 𝐴 ) ) |
| 102 |
101
|
eqeq1d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑦 ‘ 𝐴 ) = 0 ↔ ( 𝑢 ‘ 𝐴 ) = 0 ) ) |
| 103 |
102 89
|
elrabrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑢 ‘ 𝐴 ) = 0 ) |
| 104 |
|
fveq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 ‘ 𝐴 ) = ( 𝑣 ‘ 𝐴 ) ) |
| 105 |
104
|
eqeq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑦 ‘ 𝐴 ) = 0 ↔ ( 𝑣 ‘ 𝐴 ) = 0 ) ) |
| 106 |
105 93
|
elrabrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑣 ‘ 𝐴 ) = 0 ) |
| 107 |
103 106
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( 𝑢 ‘ 𝐴 ) = ( 𝑣 ‘ 𝐴 ) ) |
| 108 |
107
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 〈 𝐴 , ( 𝑢 ‘ 𝐴 ) 〉 = 〈 𝐴 , ( 𝑣 ‘ 𝐴 ) 〉 ) |
| 109 |
108
|
sneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → { 〈 𝐴 , ( 𝑢 ‘ 𝐴 ) 〉 } = { 〈 𝐴 , ( 𝑣 ‘ 𝐴 ) 〉 } ) |
| 110 |
100 109
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ( ( 𝑢 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ∪ { 〈 𝐴 , ( 𝑢 ‘ 𝐴 ) 〉 } ) = ( ( 𝑣 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ∪ { 〈 𝐴 , ( 𝑣 ‘ 𝐴 ) 〉 } ) ) |
| 111 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝐼 ∈ 𝑉 ) |
| 112 |
54
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → ℕ0 ∈ V ) |
| 113 |
63
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 114 |
60 89
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑢 ∈ 𝐷 ) |
| 115 |
113 114
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑢 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 116 |
111 112 115
|
elmaprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
| 117 |
116
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑢 Fn 𝐼 ) |
| 118 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝐴 ∈ 𝐼 ) |
| 119 |
|
fnsnsplit |
⊢ ( ( 𝑢 Fn 𝐼 ∧ 𝐴 ∈ 𝐼 ) → 𝑢 = ( ( 𝑢 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ∪ { 〈 𝐴 , ( 𝑢 ‘ 𝐴 ) 〉 } ) ) |
| 120 |
117 118 119
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑢 = ( ( 𝑢 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ∪ { 〈 𝐴 , ( 𝑢 ‘ 𝐴 ) 〉 } ) ) |
| 121 |
60 93
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑣 ∈ 𝐷 ) |
| 122 |
113 121
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑣 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 123 |
111 112 122
|
elmaprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑣 : 𝐼 ⟶ ℕ0 ) |
| 124 |
123
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑣 Fn 𝐼 ) |
| 125 |
|
fnsnsplit |
⊢ ( ( 𝑣 Fn 𝐼 ∧ 𝐴 ∈ 𝐼 ) → 𝑣 = ( ( 𝑣 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ∪ { 〈 𝐴 , ( 𝑣 ‘ 𝐴 ) 〉 } ) ) |
| 126 |
124 118 125
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑣 = ( ( 𝑣 ↾ ( 𝐼 ∖ { 𝐴 } ) ) ∪ { 〈 𝐴 , ( 𝑣 ‘ 𝐴 ) 〉 } ) ) |
| 127 |
110 120 126
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) ) → 𝑢 = 𝑣 ) |
| 128 |
127
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) → ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 129 |
128
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ∧ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ) → ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 130 |
129
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ∀ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 131 |
|
dff13 |
⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) : { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } –1-1→ ( ℕ0 ↑m 𝐽 ) ↔ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) : { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ⟶ ( ℕ0 ↑m 𝐽 ) ∧ ∀ 𝑢 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ∀ 𝑣 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 132 |
85 130 131
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) : { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } –1-1→ ( ℕ0 ↑m 𝐽 ) ) |
| 133 |
|
df-f1 |
⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) : { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } –1-1→ ( ℕ0 ↑m 𝐽 ) ↔ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) : { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ⟶ ( ℕ0 ↑m 𝐽 ) ∧ Fun ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) ) |
| 134 |
133
|
simprbi |
⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) : { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } –1-1→ ( ℕ0 ↑m 𝐽 ) → Fun ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) |
| 135 |
132 134
|
syl |
⊢ ( 𝜑 → Fun ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) |
| 136 |
49 7 2 9
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 137 |
136
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 138 |
|
imafi |
⊢ ( ( Fun ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ∧ ( 𝐹 supp 0 ) ∈ Fin ) → ( ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) “ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 139 |
135 137 138
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) “ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 140 |
84 139
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) ∈ Fin ) |
| 141 |
81 140
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) ∈ Fin ) |
| 142 |
|
fconstmpt |
⊢ ( ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) × { 0 } ) = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) |
| 143 |
142
|
oveq1i |
⊢ ( ( ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) × { 0 } ) supp 0 ) = ( ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) supp 0 ) |
| 144 |
|
fczsupp0 |
⊢ ( ( ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) × { 0 } ) supp 0 ) = ∅ |
| 145 |
143 144
|
eqtr3i |
⊢ ( ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) supp 0 ) = ∅ |
| 146 |
|
0fi |
⊢ ∅ ∈ Fin |
| 147 |
145 146
|
eqeltri |
⊢ ( ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) supp 0 ) ∈ Fin |
| 148 |
147
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) supp 0 ) ∈ Fin ) |
| 149 |
141 148
|
unfid |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) ) supp 0 ) ∪ ( ( 𝑥 ∈ ( 𝐷 ∖ { 𝑦 ∈ 𝐷 ∣ ( 𝑦 ‘ 𝐴 ) = 0 } ) ↦ 0 ) supp 0 ) ) ∈ Fin ) |
| 150 |
48 149
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) supp 0 ) ∈ Fin ) |
| 151 |
34 35 37 150
|
isfsuppd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝐹 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) finSupp 0 ) |
| 152 |
20 151
|
eqbrtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) finSupp 0 ) |
| 153 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 154 |
153 29 31 2 10
|
mplelbas |
⊢ ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ∈ 𝑁 ↔ ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) finSupp 0 ) ) |
| 155 |
33 152 154
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝐹 ) ∈ 𝑁 ) |