Metamath Proof Explorer


Theorem extvfvalf

Description: The "variable extension" function maps polynomials with variables indexed in J to polynomials with variables indexed in I . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses extvfvvcl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
extvfvvcl.3 0 = ( 0g𝑅 )
extvfvvcl.i ( 𝜑𝐼𝑉 )
extvfvvcl.r ( 𝜑𝑅 ∈ Ring )
extvfvvcl.b 𝐵 = ( Base ‘ 𝑅 )
extvfvvcl.j 𝐽 = ( 𝐼 ∖ { 𝐴 } )
extvfvvcl.m 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) )
extvfvvcl.1 ( 𝜑𝐴𝐼 )
extvfvalf.n 𝑁 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
Assertion extvfvalf ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) : 𝑀𝑁 )

Proof

Step Hyp Ref Expression
1 extvfvvcl.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
2 extvfvvcl.3 0 = ( 0g𝑅 )
3 extvfvvcl.i ( 𝜑𝐼𝑉 )
4 extvfvvcl.r ( 𝜑𝑅 ∈ Ring )
5 extvfvvcl.b 𝐵 = ( Base ‘ 𝑅 )
6 extvfvvcl.j 𝐽 = ( 𝐼 ∖ { 𝐴 } )
7 extvfvvcl.m 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) )
8 extvfvvcl.1 ( 𝜑𝐴𝐼 )
9 extvfvalf.n 𝑁 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
10 ovex ( ℕ0m 𝐼 ) ∈ V
11 1 10 rabex2 𝐷 ∈ V
12 11 a1i ( ( 𝜑𝑓𝑀 ) → 𝐷 ∈ V )
13 12 mptexd ( ( 𝜑𝑓𝑀 ) → ( 𝑥𝐷 ↦ if ( ( 𝑥𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥𝐽 ) ) , 0 ) ) ∈ V )
14 1 2 3 4 8 6 7 extvfval ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) = ( 𝑓𝑀 ↦ ( 𝑥𝐷 ↦ if ( ( 𝑥𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥𝐽 ) ) , 0 ) ) ) )
15 3 adantr ( ( 𝜑𝑓𝑀 ) → 𝐼𝑉 )
16 4 adantr ( ( 𝜑𝑓𝑀 ) → 𝑅 ∈ Ring )
17 8 adantr ( ( 𝜑𝑓𝑀 ) → 𝐴𝐼 )
18 simpr ( ( 𝜑𝑓𝑀 ) → 𝑓𝑀 )
19 1 2 15 16 5 6 7 17 18 9 extvfvcl ( ( 𝜑𝑓𝑀 ) → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝑓 ) ∈ 𝑁 )
20 13 14 19 fmpt2d ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) : 𝑀𝑁 )