| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvfvvcl.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
extvfvvcl.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
extvfvvcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
extvfvvcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
extvfvvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
extvfvvcl.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝐴 } ) |
| 7 |
|
extvfvvcl.m |
⊢ 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 8 |
|
extvfvvcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) |
| 9 |
|
extvfvalf.n |
⊢ 𝑁 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 10 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 11 |
1 10
|
rabex2 |
⊢ 𝐷 ∈ V |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → 𝐷 ∈ V ) |
| 13 |
12
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ∈ V ) |
| 14 |
1 2 3 4 8 6 7
|
extvfval |
⊢ ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) = ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) ) |
| 15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → 𝐼 ∈ 𝑉 ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
| 17 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → 𝐴 ∈ 𝐼 ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → 𝑓 ∈ 𝑀 ) |
| 19 |
1 2 15 16 5 6 7 17 18 9
|
extvfvcl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) ‘ 𝑓 ) ∈ 𝑁 ) |
| 20 |
13 14 19
|
fmpt2d |
⊢ ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) : 𝑀 ⟶ 𝑁 ) |