Metamath Proof Explorer


Theorem mvrvalind

Description: Value of the generating elements of the power series structure, expressed using the indicator function. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses mvrvalind.1 𝑉 = ( 𝐼 mVar 𝑅 )
mvrvalind.2 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mvrvalind.3 0 = ( 0g𝑅 )
mvrvalind.4 1 = ( 1r𝑅 )
mvrvalind.5 ( 𝜑𝐼𝑊 )
mvrvalind.6 ( 𝜑𝑅𝑌 )
mvrvalind.7 ( 𝜑𝑋𝐼 )
mvrvalind.8 ( 𝜑𝐹𝐷 )
mvrvalind.9 𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } )
Assertion mvrvalind ( 𝜑 → ( ( 𝑉𝑋 ) ‘ 𝐹 ) = if ( 𝐹 = 𝐴 , 1 , 0 ) )

Proof

Step Hyp Ref Expression
1 mvrvalind.1 𝑉 = ( 𝐼 mVar 𝑅 )
2 mvrvalind.2 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
3 mvrvalind.3 0 = ( 0g𝑅 )
4 mvrvalind.4 1 = ( 1r𝑅 )
5 mvrvalind.5 ( 𝜑𝐼𝑊 )
6 mvrvalind.6 ( 𝜑𝑅𝑌 )
7 mvrvalind.7 ( 𝜑𝑋𝐼 )
8 mvrvalind.8 ( 𝜑𝐹𝐷 )
9 mvrvalind.9 𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } )
10 1 2 3 4 5 6 7 8 mvrval2 ( 𝜑 → ( ( 𝑉𝑋 ) ‘ 𝐹 ) = if ( 𝐹 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) )
11 9 a1i ( 𝜑𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } ) )
12 7 snssd ( 𝜑 → { 𝑋 } ⊆ 𝐼 )
13 indval ( ( 𝐼𝑊 ∧ { 𝑋 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } ) = ( 𝑦𝐼 ↦ if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) ) )
14 5 12 13 syl2anc ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } ) = ( 𝑦𝐼 ↦ if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) ) )
15 velsn ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 )
16 15 a1i ( 𝜑 → ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) )
17 16 ifbid ( 𝜑 → if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) = if ( 𝑦 = 𝑋 , 1 , 0 ) )
18 17 mpteq2dv ( 𝜑 → ( 𝑦𝐼 ↦ if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) )
19 11 14 18 3eqtrd ( 𝜑𝐴 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) )
20 19 eqeq2d ( 𝜑 → ( 𝐹 = 𝐴𝐹 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) )
21 20 ifbid ( 𝜑 → if ( 𝐹 = 𝐴 , 1 , 0 ) = if ( 𝐹 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) )
22 10 21 eqtr4d ( 𝜑 → ( ( 𝑉𝑋 ) ‘ 𝐹 ) = if ( 𝐹 = 𝐴 , 1 , 0 ) )