| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvrvalind.1 |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 2 |
|
mvrvalind.2 |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 3 |
|
mvrvalind.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mvrvalind.4 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
mvrvalind.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mvrvalind.6 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) |
| 7 |
|
mvrvalind.7 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 8 |
|
mvrvalind.8 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 9 |
|
mvrvalind.9 |
⊢ 𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } ) |
| 10 |
1 2 3 4 5 6 7 8
|
mvrval2 |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝐹 ) = if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
| 11 |
9
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } ) ) |
| 12 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐼 ) |
| 13 |
|
indval |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ { 𝑋 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) ) ) |
| 14 |
5 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑋 } ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) ) ) |
| 15 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) ) |
| 17 |
16
|
ifbid |
⊢ ( 𝜑 → if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) = if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
| 18 |
17
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 ∈ { 𝑋 } , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
| 19 |
11 14 18
|
3eqtrd |
⊢ ( 𝜑 → 𝐴 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
| 20 |
19
|
eqeq2d |
⊢ ( 𝜑 → ( 𝐹 = 𝐴 ↔ 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
| 21 |
20
|
ifbid |
⊢ ( 𝜑 → if ( 𝐹 = 𝐴 , 1 , 0 ) = if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
| 22 |
10 21
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝐹 ) = if ( 𝐹 = 𝐴 , 1 , 0 ) ) |