Metamath Proof Explorer


Theorem mvrvalind

Description: Value of the generating elements of the power series structure, expressed using the indicator function. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses mvrvalind.1 V = I mVar R
mvrvalind.2 D = h 0 I | h -1 Fin
mvrvalind.3 0 ˙ = 0 R
mvrvalind.4 1 ˙ = 1 R
mvrvalind.5 φ I W
mvrvalind.6 φ R Y
mvrvalind.7 φ X I
mvrvalind.8 φ F D
mvrvalind.9 A = 𝟙 I X
Assertion mvrvalind φ V X F = if F = A 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 mvrvalind.1 V = I mVar R
2 mvrvalind.2 D = h 0 I | h -1 Fin
3 mvrvalind.3 0 ˙ = 0 R
4 mvrvalind.4 1 ˙ = 1 R
5 mvrvalind.5 φ I W
6 mvrvalind.6 φ R Y
7 mvrvalind.7 φ X I
8 mvrvalind.8 φ F D
9 mvrvalind.9 A = 𝟙 I X
10 1 2 3 4 5 6 7 8 mvrval2 φ V X F = if F = y I if y = X 1 0 1 ˙ 0 ˙
11 9 a1i φ A = 𝟙 I X
12 7 snssd φ X I
13 indval I W X I 𝟙 I X = y I if y X 1 0
14 5 12 13 syl2anc φ 𝟙 I X = y I if y X 1 0
15 velsn y X y = X
16 15 a1i φ y X y = X
17 16 ifbid φ if y X 1 0 = if y = X 1 0
18 17 mpteq2dv φ y I if y X 1 0 = y I if y = X 1 0
19 11 14 18 3eqtrd φ A = y I if y = X 1 0
20 19 eqeq2d φ F = A F = y I if y = X 1 0
21 20 ifbid φ if F = A 1 ˙ 0 ˙ = if F = y I if y = X 1 0 1 ˙ 0 ˙
22 10 21 eqtr4d φ V X F = if F = A 1 ˙ 0 ˙