| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvrvalind.1 |
|- V = ( I mVar R ) |
| 2 |
|
mvrvalind.2 |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 3 |
|
mvrvalind.3 |
|- .0. = ( 0g ` R ) |
| 4 |
|
mvrvalind.4 |
|- .1. = ( 1r ` R ) |
| 5 |
|
mvrvalind.5 |
|- ( ph -> I e. W ) |
| 6 |
|
mvrvalind.6 |
|- ( ph -> R e. Y ) |
| 7 |
|
mvrvalind.7 |
|- ( ph -> X e. I ) |
| 8 |
|
mvrvalind.8 |
|- ( ph -> F e. D ) |
| 9 |
|
mvrvalind.9 |
|- A = ( ( _Ind ` I ) ` { X } ) |
| 10 |
1 2 3 4 5 6 7 8
|
mvrval2 |
|- ( ph -> ( ( V ` X ) ` F ) = if ( F = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) |
| 11 |
9
|
a1i |
|- ( ph -> A = ( ( _Ind ` I ) ` { X } ) ) |
| 12 |
7
|
snssd |
|- ( ph -> { X } C_ I ) |
| 13 |
|
indval |
|- ( ( I e. W /\ { X } C_ I ) -> ( ( _Ind ` I ) ` { X } ) = ( y e. I |-> if ( y e. { X } , 1 , 0 ) ) ) |
| 14 |
5 12 13
|
syl2anc |
|- ( ph -> ( ( _Ind ` I ) ` { X } ) = ( y e. I |-> if ( y e. { X } , 1 , 0 ) ) ) |
| 15 |
|
velsn |
|- ( y e. { X } <-> y = X ) |
| 16 |
15
|
a1i |
|- ( ph -> ( y e. { X } <-> y = X ) ) |
| 17 |
16
|
ifbid |
|- ( ph -> if ( y e. { X } , 1 , 0 ) = if ( y = X , 1 , 0 ) ) |
| 18 |
17
|
mpteq2dv |
|- ( ph -> ( y e. I |-> if ( y e. { X } , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) |
| 19 |
11 14 18
|
3eqtrd |
|- ( ph -> A = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) |
| 20 |
19
|
eqeq2d |
|- ( ph -> ( F = A <-> F = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
| 21 |
20
|
ifbid |
|- ( ph -> if ( F = A , .1. , .0. ) = if ( F = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) |
| 22 |
10 21
|
eqtr4d |
|- ( ph -> ( ( V ` X ) ` F ) = if ( F = A , .1. , .0. ) ) |