Metamath Proof Explorer


Theorem mvrvalind

Description: Value of the generating elements of the power series structure, expressed using the indicator function. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses mvrvalind.1
|- V = ( I mVar R )
mvrvalind.2
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
mvrvalind.3
|- .0. = ( 0g ` R )
mvrvalind.4
|- .1. = ( 1r ` R )
mvrvalind.5
|- ( ph -> I e. W )
mvrvalind.6
|- ( ph -> R e. Y )
mvrvalind.7
|- ( ph -> X e. I )
mvrvalind.8
|- ( ph -> F e. D )
mvrvalind.9
|- A = ( ( _Ind ` I ) ` { X } )
Assertion mvrvalind
|- ( ph -> ( ( V ` X ) ` F ) = if ( F = A , .1. , .0. ) )

Proof

Step Hyp Ref Expression
1 mvrvalind.1
 |-  V = ( I mVar R )
2 mvrvalind.2
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
3 mvrvalind.3
 |-  .0. = ( 0g ` R )
4 mvrvalind.4
 |-  .1. = ( 1r ` R )
5 mvrvalind.5
 |-  ( ph -> I e. W )
6 mvrvalind.6
 |-  ( ph -> R e. Y )
7 mvrvalind.7
 |-  ( ph -> X e. I )
8 mvrvalind.8
 |-  ( ph -> F e. D )
9 mvrvalind.9
 |-  A = ( ( _Ind ` I ) ` { X } )
10 1 2 3 4 5 6 7 8 mvrval2
 |-  ( ph -> ( ( V ` X ) ` F ) = if ( F = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) )
11 9 a1i
 |-  ( ph -> A = ( ( _Ind ` I ) ` { X } ) )
12 7 snssd
 |-  ( ph -> { X } C_ I )
13 indval
 |-  ( ( I e. W /\ { X } C_ I ) -> ( ( _Ind ` I ) ` { X } ) = ( y e. I |-> if ( y e. { X } , 1 , 0 ) ) )
14 5 12 13 syl2anc
 |-  ( ph -> ( ( _Ind ` I ) ` { X } ) = ( y e. I |-> if ( y e. { X } , 1 , 0 ) ) )
15 velsn
 |-  ( y e. { X } <-> y = X )
16 15 a1i
 |-  ( ph -> ( y e. { X } <-> y = X ) )
17 16 ifbid
 |-  ( ph -> if ( y e. { X } , 1 , 0 ) = if ( y = X , 1 , 0 ) )
18 17 mpteq2dv
 |-  ( ph -> ( y e. I |-> if ( y e. { X } , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) )
19 11 14 18 3eqtrd
 |-  ( ph -> A = ( y e. I |-> if ( y = X , 1 , 0 ) ) )
20 19 eqeq2d
 |-  ( ph -> ( F = A <-> F = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) )
21 20 ifbid
 |-  ( ph -> if ( F = A , .1. , .0. ) = if ( F = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) )
22 10 21 eqtr4d
 |-  ( ph -> ( ( V ` X ) ` F ) = if ( F = A , .1. , .0. ) )