Metamath Proof Explorer


Theorem mplmulmvr

Description: Multiply a polynomial F with a variable X (i.e. with a monic monomial). (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses mplmulmvr.1 𝑃 = ( 𝐼 mPoly 𝑅 )
mplmulmvr.2 𝑋 = ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 )
mplmulmvr.3 𝑀 = ( Base ‘ 𝑃 )
mplmulmvr.4 · = ( .r𝑃 )
mplmulmvr.5 0 = ( 0g𝑅 )
mplmulmvr.6 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
mplmulmvr.7 𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } )
mplmulmvr.8 ( 𝜑𝐼𝑉 )
mplmulmvr.9 ( 𝜑𝑌𝐼 )
mplmulmvr.10 ( 𝜑𝑅 ∈ Ring )
mplmulmvr.11 ( 𝜑𝐹𝑀 )
Assertion mplmulmvr ( 𝜑 → ( 𝑋 · 𝐹 ) = ( 𝑏𝐷 ↦ if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mplmulmvr.1 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplmulmvr.2 𝑋 = ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 )
3 mplmulmvr.3 𝑀 = ( Base ‘ 𝑃 )
4 mplmulmvr.4 · = ( .r𝑃 )
5 mplmulmvr.5 0 = ( 0g𝑅 )
6 mplmulmvr.6 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
7 mplmulmvr.7 𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } )
8 mplmulmvr.8 ( 𝜑𝐼𝑉 )
9 mplmulmvr.9 ( 𝜑𝑌𝐼 )
10 mplmulmvr.10 ( 𝜑𝑅 ∈ Ring )
11 mplmulmvr.11 ( 𝜑𝐹𝑀 )
12 eqid ( .r𝑅 ) = ( .r𝑅 )
13 6 psrbasfsupp 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
14 eqid ( 𝐼 mVar 𝑅 ) = ( 𝐼 mVar 𝑅 )
15 1 14 3 8 10 9 mvrcl ( 𝜑 → ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ∈ 𝑀 )
16 2 15 eqeltrid ( 𝜑𝑋𝑀 )
17 1 3 12 4 13 16 11 mplmul ( 𝜑 → ( 𝑋 · 𝐹 ) = ( 𝑏𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) ) )
18 eqeq2 ( 0 = if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) → ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = 0 ↔ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) ) )
19 eqeq2 ( ( 𝐹 ‘ ( 𝑏f𝐴 ) ) = if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) → ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ↔ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) ) )
20 simplll ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝜑 )
21 ssrab2 { 𝑦𝐷𝑦r𝑏 } ⊆ 𝐷
22 21 a1i ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → { 𝑦𝐷𝑦r𝑏 } ⊆ 𝐷 )
23 22 sselda ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥𝐷 )
24 2 fveq1i ( 𝑋𝑥 ) = ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ‘ 𝑥 )
25 eqid ( 1r𝑅 ) = ( 1r𝑅 )
26 8 adantr ( ( 𝜑𝑥𝐷 ) → 𝐼𝑉 )
27 10 adantr ( ( 𝜑𝑥𝐷 ) → 𝑅 ∈ Ring )
28 9 adantr ( ( 𝜑𝑥𝐷 ) → 𝑌𝐼 )
29 simpr ( ( 𝜑𝑥𝐷 ) → 𝑥𝐷 )
30 14 13 5 25 26 27 28 29 7 mvrvalind ( ( 𝜑𝑥𝐷 ) → ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) )
31 24 30 eqtrid ( ( 𝜑𝑥𝐷 ) → ( 𝑋𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) )
32 20 23 31 syl2anc ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 𝑋𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) )
33 32 oveq1d ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = ( if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) )
34 simpr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 )
35 34 fveq1d ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥𝑌 ) = ( 𝐴𝑌 ) )
36 0ne1 0 ≠ 1
37 36 a1i ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → 0 ≠ 1 )
38 20 8 syl ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝐼𝑉 )
39 nn0ex 0 ∈ V
40 39 a1i ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ℕ0 ∈ V )
41 6 ssrab3 𝐷 ⊆ ( ℕ0m 𝐼 )
42 22 41 sstrdi ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → { 𝑦𝐷𝑦r𝑏 } ⊆ ( ℕ0m 𝐼 ) )
43 42 sselda ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥 ∈ ( ℕ0m 𝐼 ) )
44 38 40 43 elmaprd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
45 44 adantr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → 𝑥 : 𝐼 ⟶ ℕ0 )
46 9 ad4antr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → 𝑌𝐼 )
47 45 46 ffvelcdmd ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥𝑌 ) ∈ ℕ0 )
48 44 ffnd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥 Fn 𝐼 )
49 8 adantr ( ( 𝜑𝑏𝐷 ) → 𝐼𝑉 )
50 39 a1i ( ( 𝜑𝑏𝐷 ) → ℕ0 ∈ V )
51 41 a1i ( 𝜑𝐷 ⊆ ( ℕ0m 𝐼 ) )
52 51 sselda ( ( 𝜑𝑏𝐷 ) → 𝑏 ∈ ( ℕ0m 𝐼 ) )
53 49 50 52 elmaprd ( ( 𝜑𝑏𝐷 ) → 𝑏 : 𝐼 ⟶ ℕ0 )
54 53 ad2antrr ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑏 : 𝐼 ⟶ ℕ0 )
55 54 ffnd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑏 Fn 𝐼 )
56 breq1 ( 𝑦 = 𝑥 → ( 𝑦r𝑏𝑥r𝑏 ) )
57 simpr ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } )
58 56 57 elrabrd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥r𝑏 )
59 20 9 syl ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑌𝐼 )
60 48 55 38 58 59 fnfvor ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 𝑥𝑌 ) ≤ ( 𝑏𝑌 ) )
61 60 adantr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥𝑌 ) ≤ ( 𝑏𝑌 ) )
62 simpllr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑏𝑌 ) = 0 )
63 61 62 breqtrd ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥𝑌 ) ≤ 0 )
64 nn0le0eq0 ( ( 𝑥𝑌 ) ∈ ℕ0 → ( ( 𝑥𝑌 ) ≤ 0 ↔ ( 𝑥𝑌 ) = 0 ) )
65 64 biimpa ( ( ( 𝑥𝑌 ) ∈ ℕ0 ∧ ( 𝑥𝑌 ) ≤ 0 ) → ( 𝑥𝑌 ) = 0 )
66 47 63 65 syl2anc ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥𝑌 ) = 0 )
67 7 fveq1i ( 𝐴𝑌 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 )
68 9 snssd ( 𝜑 → { 𝑌 } ⊆ 𝐼 )
69 snidg ( 𝑌𝐼𝑌 ∈ { 𝑌 } )
70 9 69 syl ( 𝜑𝑌 ∈ { 𝑌 } )
71 ind1 ( ( 𝐼𝑉 ∧ { 𝑌 } ⊆ 𝐼𝑌 ∈ { 𝑌 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 )
72 8 68 70 71 syl3anc ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 )
73 67 72 eqtrid ( 𝜑 → ( 𝐴𝑌 ) = 1 )
74 73 ad4antr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝐴𝑌 ) = 1 )
75 37 66 74 3netr4d ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥𝑌 ) ≠ ( 𝐴𝑌 ) )
76 75 neneqd ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ¬ ( 𝑥𝑌 ) = ( 𝐴𝑌 ) )
77 35 76 pm2.65da ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ¬ 𝑥 = 𝐴 )
78 77 iffalsed ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) = 0 )
79 78 oveq1d ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = ( 0 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) )
80 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
81 20 10 syl ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑅 ∈ Ring )
82 1 80 3 13 11 mplelf ( 𝜑𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
83 20 82 syl ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
84 simpllr ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑏𝐷 )
85 13 psrbagcon ( ( 𝑏𝐷𝑥 : 𝐼 ⟶ ℕ0𝑥r𝑏 ) → ( ( 𝑏f𝑥 ) ∈ 𝐷 ∧ ( 𝑏f𝑥 ) ∘r𝑏 ) )
86 85 simpld ( ( 𝑏𝐷𝑥 : 𝐼 ⟶ ℕ0𝑥r𝑏 ) → ( 𝑏f𝑥 ) ∈ 𝐷 )
87 84 44 58 86 syl3anc ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 𝑏f𝑥 ) ∈ 𝐷 )
88 83 87 ffvelcdmd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ∈ ( Base ‘ 𝑅 ) )
89 80 12 5 81 88 ringlzd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 0 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = 0 )
90 33 79 89 3eqtrd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = 0 )
91 90 mpteq2dva ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ 0 ) )
92 91 oveq2d ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ 0 ) ) )
93 10 ringgrpd ( 𝜑𝑅 ∈ Grp )
94 93 grpmndd ( 𝜑𝑅 ∈ Mnd )
95 94 ad2antrr ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → 𝑅 ∈ Mnd )
96 ovex ( ℕ0m 𝐼 ) ∈ V
97 6 96 rab2ex { 𝑦𝐷𝑦r𝑏 } ∈ V
98 97 a1i ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → { 𝑦𝐷𝑦r𝑏 } ∈ V )
99 5 gsumz ( ( 𝑅 ∈ Mnd ∧ { 𝑦𝐷𝑦r𝑏 } ∈ V ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ 0 ) ) = 0 )
100 95 98 99 syl2anc ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ 0 ) ) = 0 )
101 92 100 eqtrd ( ( ( 𝜑𝑏𝐷 ) ∧ ( 𝑏𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = 0 )
102 simplll ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝜑 )
103 21 a1i ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → { 𝑦𝐷𝑦r𝑏 } ⊆ 𝐷 )
104 103 sselda ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥𝐷 )
105 102 104 31 syl2anc ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 𝑋𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) )
106 105 oveq1d ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = ( if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) )
107 ovif ( if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = if ( 𝑥 = 𝐴 , ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) , ( 0 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) )
108 107 a1i ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( if ( 𝑥 = 𝐴 , ( 1r𝑅 ) , 0 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = if ( 𝑥 = 𝐴 , ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) , ( 0 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) )
109 102 10 syl ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑅 ∈ Ring )
110 102 82 syl ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
111 simpllr ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑏𝐷 )
112 102 8 syl ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝐼𝑉 )
113 39 a1i ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ℕ0 ∈ V )
114 41 104 sselid ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥 ∈ ( ℕ0m 𝐼 ) )
115 112 113 114 elmaprd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
116 simpr ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } )
117 56 116 elrabrd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → 𝑥r𝑏 )
118 111 115 117 86 syl3anc ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 𝑏f𝑥 ) ∈ 𝐷 )
119 110 118 ffvelcdmd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ∈ ( Base ‘ 𝑅 ) )
120 80 12 25 109 119 ringlidmd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = ( 𝐹 ‘ ( 𝑏f𝑥 ) ) )
121 120 adantr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = ( 𝐹 ‘ ( 𝑏f𝑥 ) ) )
122 oveq2 ( 𝑥 = 𝐴 → ( 𝑏f𝑥 ) = ( 𝑏f𝐴 ) )
123 122 adantl ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑏f𝑥 ) = ( 𝑏f𝐴 ) )
124 123 fveq2d ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝐹 ‘ ( 𝑏f𝑥 ) ) = ( 𝐹 ‘ ( 𝑏f𝐴 ) ) )
125 121 124 eqtrd ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = ( 𝐹 ‘ ( 𝑏f𝐴 ) ) )
126 80 12 5 109 119 ringlzd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( 0 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = 0 )
127 126 adantr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) ∧ ¬ 𝑥 = 𝐴 ) → ( 0 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = 0 )
128 125 127 ifeq12da ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → if ( 𝑥 = 𝐴 , ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) , ( 0 ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) = if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) , 0 ) )
129 106 108 128 3eqtrd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ) → ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) = if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) , 0 ) )
130 129 mpteq2dva ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) , 0 ) ) )
131 130 oveq2d ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) , 0 ) ) ) )
132 94 ad2antrr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝑅 ∈ Mnd )
133 97 a1i ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → { 𝑦𝐷𝑦r𝑏 } ∈ V )
134 breq1 ( 𝑦 = 𝐴 → ( 𝑦r𝑏𝐴r𝑏 ) )
135 breq1 ( = 𝐴 → ( finSupp 0 ↔ 𝐴 finSupp 0 ) )
136 39 a1i ( 𝜑 → ℕ0 ∈ V )
137 indf ( ( 𝐼𝑉 ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } )
138 8 68 137 syl2anc ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } )
139 7 feq1i ( 𝐴 : 𝐼 ⟶ { 0 , 1 } ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } )
140 138 139 sylibr ( 𝜑𝐴 : 𝐼 ⟶ { 0 , 1 } )
141 0nn0 0 ∈ ℕ0
142 141 a1i ( 𝜑 → 0 ∈ ℕ0 )
143 1nn0 1 ∈ ℕ0
144 143 a1i ( 𝜑 → 1 ∈ ℕ0 )
145 142 144 prssd ( 𝜑 → { 0 , 1 } ⊆ ℕ0 )
146 140 145 fssd ( 𝜑𝐴 : 𝐼 ⟶ ℕ0 )
147 136 8 146 elmapdd ( 𝜑𝐴 ∈ ( ℕ0m 𝐼 ) )
148 146 ffund ( 𝜑 → Fun 𝐴 )
149 7 oveq1i ( 𝐴 supp 0 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) supp 0 )
150 indsupp ( ( 𝐼𝑉 ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) supp 0 ) = { 𝑌 } )
151 8 68 150 syl2anc ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) supp 0 ) = { 𝑌 } )
152 149 151 eqtrid ( 𝜑 → ( 𝐴 supp 0 ) = { 𝑌 } )
153 snfi { 𝑌 } ∈ Fin
154 152 153 eqeltrdi ( 𝜑 → ( 𝐴 supp 0 ) ∈ Fin )
155 147 142 148 154 isfsuppd ( 𝜑𝐴 finSupp 0 )
156 135 147 155 elrabd ( 𝜑𝐴 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
157 156 6 eleqtrrdi ( 𝜑𝐴𝐷 )
158 157 ad2antrr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝐴𝐷 )
159 breq1 ( 1 = if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) → ( 1 ≤ ( 𝑏𝑢 ) ↔ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏𝑢 ) ) )
160 breq1 ( 0 = if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) → ( 0 ≤ ( 𝑏𝑢 ) ↔ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏𝑢 ) ) )
161 53 adantr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝑏 : 𝐼 ⟶ ℕ0 )
162 161 ffvelcdmda ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) → ( 𝑏𝑢 ) ∈ ℕ0 )
163 162 adantr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏𝑢 ) ∈ ℕ0 )
164 elsni ( 𝑢 ∈ { 𝑌 } → 𝑢 = 𝑌 )
165 164 adantl ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → 𝑢 = 𝑌 )
166 165 fveq2d ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏𝑢 ) = ( 𝑏𝑌 ) )
167 simpllr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ¬ ( 𝑏𝑌 ) = 0 )
168 167 neqned ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏𝑌 ) ≠ 0 )
169 166 168 eqnetrd ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏𝑢 ) ≠ 0 )
170 elnnne0 ( ( 𝑏𝑢 ) ∈ ℕ ↔ ( ( 𝑏𝑢 ) ∈ ℕ0 ∧ ( 𝑏𝑢 ) ≠ 0 ) )
171 163 169 170 sylanbrc ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏𝑢 ) ∈ ℕ )
172 171 nnge1d ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → 1 ≤ ( 𝑏𝑢 ) )
173 162 nn0ge0d ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) → 0 ≤ ( 𝑏𝑢 ) )
174 173 adantr ( ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) ∧ ¬ 𝑢 ∈ { 𝑌 } ) → 0 ≤ ( 𝑏𝑢 ) )
175 159 160 172 174 ifbothda ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) → if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏𝑢 ) )
176 175 ralrimiva ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ∀ 𝑢𝐼 if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏𝑢 ) )
177 8 ad2antrr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝐼𝑉 )
178 143 a1i ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) → 1 ∈ ℕ0 )
179 141 a1i ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) → 0 ∈ ℕ0 )
180 178 179 ifexd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) → if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ∈ V )
181 fvexd ( ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) ∧ 𝑢𝐼 ) → ( 𝑏𝑢 ) ∈ V )
182 indval ( ( 𝐼𝑉 ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) = ( 𝑢𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) )
183 8 68 182 syl2anc ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) = ( 𝑢𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) )
184 7 183 eqtrid ( 𝜑𝐴 = ( 𝑢𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) )
185 184 ad2antrr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝐴 = ( 𝑢𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) )
186 53 feqmptd ( ( 𝜑𝑏𝐷 ) → 𝑏 = ( 𝑢𝐼 ↦ ( 𝑏𝑢 ) ) )
187 186 adantr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝑏 = ( 𝑢𝐼 ↦ ( 𝑏𝑢 ) ) )
188 177 180 181 185 187 ofrfval2 ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ( 𝐴r𝑏 ↔ ∀ 𝑢𝐼 if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏𝑢 ) ) )
189 176 188 mpbird ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝐴r𝑏 )
190 134 158 189 elrabd ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝐴 ∈ { 𝑦𝐷𝑦r𝑏 } )
191 eqid ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) , 0 ) ) = ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) , 0 ) )
192 82 ad2antrr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
193 simplr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝑏𝐷 )
194 146 ad2antrr ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → 𝐴 : 𝐼 ⟶ ℕ0 )
195 13 psrbagcon ( ( 𝑏𝐷𝐴 : 𝐼 ⟶ ℕ0𝐴r𝑏 ) → ( ( 𝑏f𝐴 ) ∈ 𝐷 ∧ ( 𝑏f𝐴 ) ∘r𝑏 ) )
196 195 simpld ( ( 𝑏𝐷𝐴 : 𝐼 ⟶ ℕ0𝐴r𝑏 ) → ( 𝑏f𝐴 ) ∈ 𝐷 )
197 193 194 189 196 syl3anc ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ( 𝑏f𝐴 ) ∈ 𝐷 )
198 192 197 ffvelcdmd ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ∈ ( Base ‘ 𝑅 ) )
199 5 132 133 190 191 198 gsummptif1n0 ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) , 0 ) ) ) = ( 𝐹 ‘ ( 𝑏f𝐴 ) ) )
200 131 199 eqtrd ( ( ( 𝜑𝑏𝐷 ) ∧ ¬ ( 𝑏𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = ( 𝐹 ‘ ( 𝑏f𝐴 ) ) )
201 18 19 101 200 ifbothda ( ( 𝜑𝑏𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) = if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) )
202 201 mpteq2dva ( 𝜑 → ( 𝑏𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑏 } ↦ ( ( 𝑋𝑥 ) ( .r𝑅 ) ( 𝐹 ‘ ( 𝑏f𝑥 ) ) ) ) ) ) = ( 𝑏𝐷 ↦ if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) ) )
203 17 202 eqtrd ( 𝜑 → ( 𝑋 · 𝐹 ) = ( 𝑏𝐷 ↦ if ( ( 𝑏𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏f𝐴 ) ) ) ) )