| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplmulmvr.1 |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplmulmvr.2 |
⊢ 𝑋 = ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) |
| 3 |
|
mplmulmvr.3 |
⊢ 𝑀 = ( Base ‘ 𝑃 ) |
| 4 |
|
mplmulmvr.4 |
⊢ · = ( .r ‘ 𝑃 ) |
| 5 |
|
mplmulmvr.5 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
mplmulmvr.6 |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 7 |
|
mplmulmvr.7 |
⊢ 𝐴 = ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) |
| 8 |
|
mplmulmvr.8 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 9 |
|
mplmulmvr.9 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
| 10 |
|
mplmulmvr.10 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 11 |
|
mplmulmvr.11 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑀 ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 13 |
6
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 14 |
|
eqid |
⊢ ( 𝐼 mVar 𝑅 ) = ( 𝐼 mVar 𝑅 ) |
| 15 |
1 14 3 8 10 9
|
mvrcl |
⊢ ( 𝜑 → ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ∈ 𝑀 ) |
| 16 |
2 15
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ 𝑀 ) |
| 17 |
1 3 12 4 13 16 11
|
mplmul |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) = ( 𝑏 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 18 |
|
eqeq2 |
⊢ ( 0 = if ( ( 𝑏 ‘ 𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) → ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = 0 ↔ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = if ( ( 𝑏 ‘ 𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) ) ) |
| 19 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) = if ( ( 𝑏 ‘ 𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) → ( ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ↔ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = if ( ( 𝑏 ‘ 𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) ) ) |
| 20 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝜑 ) |
| 21 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ⊆ 𝐷 |
| 22 |
21
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ⊆ 𝐷 ) |
| 23 |
22
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∈ 𝐷 ) |
| 24 |
2
|
fveq1i |
⊢ ( 𝑋 ‘ 𝑥 ) = ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ‘ 𝑥 ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 28 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑌 ∈ 𝐼 ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 30 |
14 13 5 25 26 27 28 29 7
|
mvrvalind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 31 |
24 30
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 32 |
20 23 31
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 𝑋 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 33 |
32
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = ( if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) |
| 34 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
| 35 |
34
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥 ‘ 𝑌 ) = ( 𝐴 ‘ 𝑌 ) ) |
| 36 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 37 |
36
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → 0 ≠ 1 ) |
| 38 |
20 8
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝐼 ∈ 𝑉 ) |
| 39 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ℕ0 ∈ V ) |
| 41 |
6
|
ssrab3 |
⊢ 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) |
| 42 |
22 41
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 43 |
42
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 44 |
38 40 43
|
elmaprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 46 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → 𝑌 ∈ 𝐼 ) |
| 47 |
45 46
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥 ‘ 𝑌 ) ∈ ℕ0 ) |
| 48 |
44
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 Fn 𝐼 ) |
| 49 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 50 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ℕ0 ∈ V ) |
| 51 |
41
|
a1i |
⊢ ( 𝜑 → 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 52 |
51
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 53 |
49 50 52
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 55 |
54
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑏 Fn 𝐼 ) |
| 56 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∘r ≤ 𝑏 ↔ 𝑥 ∘r ≤ 𝑏 ) ) |
| 57 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) |
| 58 |
56 57
|
elrabrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∘r ≤ 𝑏 ) |
| 59 |
20 9
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑌 ∈ 𝐼 ) |
| 60 |
48 55 38 58 59
|
fnfvor |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 𝑥 ‘ 𝑌 ) ≤ ( 𝑏 ‘ 𝑌 ) ) |
| 61 |
60
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥 ‘ 𝑌 ) ≤ ( 𝑏 ‘ 𝑌 ) ) |
| 62 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑏 ‘ 𝑌 ) = 0 ) |
| 63 |
61 62
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥 ‘ 𝑌 ) ≤ 0 ) |
| 64 |
|
nn0le0eq0 |
⊢ ( ( 𝑥 ‘ 𝑌 ) ∈ ℕ0 → ( ( 𝑥 ‘ 𝑌 ) ≤ 0 ↔ ( 𝑥 ‘ 𝑌 ) = 0 ) ) |
| 65 |
64
|
biimpa |
⊢ ( ( ( 𝑥 ‘ 𝑌 ) ∈ ℕ0 ∧ ( 𝑥 ‘ 𝑌 ) ≤ 0 ) → ( 𝑥 ‘ 𝑌 ) = 0 ) |
| 66 |
47 63 65
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥 ‘ 𝑌 ) = 0 ) |
| 67 |
7
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑌 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) |
| 68 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐼 ) |
| 69 |
|
snidg |
⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ { 𝑌 } ) |
| 70 |
9 69
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ { 𝑌 } ) |
| 71 |
|
ind1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ { 𝑌 } ⊆ 𝐼 ∧ 𝑌 ∈ { 𝑌 } ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 ) |
| 72 |
8 68 70 71
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) ‘ 𝑌 ) = 1 ) |
| 73 |
67 72
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑌 ) = 1 ) |
| 74 |
73
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝐴 ‘ 𝑌 ) = 1 ) |
| 75 |
37 66 74
|
3netr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑥 ‘ 𝑌 ) ≠ ( 𝐴 ‘ 𝑌 ) ) |
| 76 |
75
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ¬ ( 𝑥 ‘ 𝑌 ) = ( 𝐴 ‘ 𝑌 ) ) |
| 77 |
35 76
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ¬ 𝑥 = 𝐴 ) |
| 78 |
77
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) = 0 ) |
| 79 |
78
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) |
| 80 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 81 |
20 10
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑅 ∈ Ring ) |
| 82 |
1 80 3 13 11
|
mplelf |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 83 |
20 82
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 84 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑏 ∈ 𝐷 ) |
| 85 |
13
|
psrbagcon |
⊢ ( ( 𝑏 ∈ 𝐷 ∧ 𝑥 : 𝐼 ⟶ ℕ0 ∧ 𝑥 ∘r ≤ 𝑏 ) → ( ( 𝑏 ∘f − 𝑥 ) ∈ 𝐷 ∧ ( 𝑏 ∘f − 𝑥 ) ∘r ≤ 𝑏 ) ) |
| 86 |
85
|
simpld |
⊢ ( ( 𝑏 ∈ 𝐷 ∧ 𝑥 : 𝐼 ⟶ ℕ0 ∧ 𝑥 ∘r ≤ 𝑏 ) → ( 𝑏 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 87 |
84 44 58 86
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 88 |
83 87
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 89 |
80 12 5 81 88
|
ringlzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 0 ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = 0 ) |
| 90 |
33 79 89
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = 0 ) |
| 91 |
90
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ 0 ) ) |
| 92 |
91
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ 0 ) ) ) |
| 93 |
10
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 94 |
93
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 95 |
94
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝑅 ∈ Mnd ) |
| 96 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 97 |
6 96
|
rab2ex |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ∈ V |
| 98 |
97
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ∈ V ) |
| 99 |
5
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ∈ V ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ 0 ) ) = 0 ) |
| 100 |
95 98 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ 0 ) ) = 0 ) |
| 101 |
92 100
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = 0 ) |
| 102 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝜑 ) |
| 103 |
21
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ⊆ 𝐷 ) |
| 104 |
103
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∈ 𝐷 ) |
| 105 |
102 104 31
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 𝑋 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 106 |
105
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = ( if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) |
| 107 |
|
ovif |
⊢ ( if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) , ( 0 ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) |
| 108 |
107
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( if ( 𝑥 = 𝐴 , ( 1r ‘ 𝑅 ) , 0 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) , ( 0 ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) |
| 109 |
102 10
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑅 ∈ Ring ) |
| 110 |
102 82
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 111 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑏 ∈ 𝐷 ) |
| 112 |
102 8
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝐼 ∈ 𝑉 ) |
| 113 |
39
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ℕ0 ∈ V ) |
| 114 |
41 104
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 115 |
112 113 114
|
elmaprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 116 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) |
| 117 |
56 116
|
elrabrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → 𝑥 ∘r ≤ 𝑏 ) |
| 118 |
111 115 117 86
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 119 |
110 118
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 120 |
80 12 25 109 119
|
ringlidmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) |
| 121 |
120
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) |
| 122 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑏 ∘f − 𝑥 ) = ( 𝑏 ∘f − 𝐴 ) ) |
| 123 |
122
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝑏 ∘f − 𝑥 ) = ( 𝑏 ∘f − 𝐴 ) ) |
| 124 |
123
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) |
| 125 |
121 124
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ 𝑥 = 𝐴 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) |
| 126 |
80 12 5 109 119
|
ringlzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( 0 ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = 0 ) |
| 127 |
126
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) ∧ ¬ 𝑥 = 𝐴 ) → ( 0 ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = 0 ) |
| 128 |
125 127
|
ifeq12da |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → if ( 𝑥 = 𝐴 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) , ( 0 ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) = if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) , 0 ) ) |
| 129 |
106 108 128
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) , 0 ) ) |
| 130 |
129
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) , 0 ) ) ) |
| 131 |
130
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) , 0 ) ) ) ) |
| 132 |
94
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝑅 ∈ Mnd ) |
| 133 |
97
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ∈ V ) |
| 134 |
|
breq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∘r ≤ 𝑏 ↔ 𝐴 ∘r ≤ 𝑏 ) ) |
| 135 |
|
breq1 |
⊢ ( ℎ = 𝐴 → ( ℎ finSupp 0 ↔ 𝐴 finSupp 0 ) ) |
| 136 |
39
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 137 |
|
indf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } ) |
| 138 |
8 68 137
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } ) |
| 139 |
7
|
feq1i |
⊢ ( 𝐴 : 𝐼 ⟶ { 0 , 1 } ↔ ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) : 𝐼 ⟶ { 0 , 1 } ) |
| 140 |
138 139
|
sylibr |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ { 0 , 1 } ) |
| 141 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 142 |
141
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 143 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 144 |
143
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 145 |
142 144
|
prssd |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ℕ0 ) |
| 146 |
140 145
|
fssd |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ ℕ0 ) |
| 147 |
136 8 146
|
elmapdd |
⊢ ( 𝜑 → 𝐴 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 148 |
146
|
ffund |
⊢ ( 𝜑 → Fun 𝐴 ) |
| 149 |
7
|
oveq1i |
⊢ ( 𝐴 supp 0 ) = ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) supp 0 ) |
| 150 |
|
indsupp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) supp 0 ) = { 𝑌 } ) |
| 151 |
8 68 150
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) supp 0 ) = { 𝑌 } ) |
| 152 |
149 151
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 supp 0 ) = { 𝑌 } ) |
| 153 |
|
snfi |
⊢ { 𝑌 } ∈ Fin |
| 154 |
152 153
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐴 supp 0 ) ∈ Fin ) |
| 155 |
147 142 148 154
|
isfsuppd |
⊢ ( 𝜑 → 𝐴 finSupp 0 ) |
| 156 |
135 147 155
|
elrabd |
⊢ ( 𝜑 → 𝐴 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 157 |
156 6
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 158 |
157
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝐴 ∈ 𝐷 ) |
| 159 |
|
breq1 |
⊢ ( 1 = if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) → ( 1 ≤ ( 𝑏 ‘ 𝑢 ) ↔ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏 ‘ 𝑢 ) ) ) |
| 160 |
|
breq1 |
⊢ ( 0 = if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) → ( 0 ≤ ( 𝑏 ‘ 𝑢 ) ↔ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏 ‘ 𝑢 ) ) ) |
| 161 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 162 |
161
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑢 ) ∈ ℕ0 ) |
| 163 |
162
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏 ‘ 𝑢 ) ∈ ℕ0 ) |
| 164 |
|
elsni |
⊢ ( 𝑢 ∈ { 𝑌 } → 𝑢 = 𝑌 ) |
| 165 |
164
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → 𝑢 = 𝑌 ) |
| 166 |
165
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏 ‘ 𝑢 ) = ( 𝑏 ‘ 𝑌 ) ) |
| 167 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) |
| 168 |
167
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏 ‘ 𝑌 ) ≠ 0 ) |
| 169 |
166 168
|
eqnetrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏 ‘ 𝑢 ) ≠ 0 ) |
| 170 |
|
elnnne0 |
⊢ ( ( 𝑏 ‘ 𝑢 ) ∈ ℕ ↔ ( ( 𝑏 ‘ 𝑢 ) ∈ ℕ0 ∧ ( 𝑏 ‘ 𝑢 ) ≠ 0 ) ) |
| 171 |
163 169 170
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → ( 𝑏 ‘ 𝑢 ) ∈ ℕ ) |
| 172 |
171
|
nnge1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ 𝑢 ∈ { 𝑌 } ) → 1 ≤ ( 𝑏 ‘ 𝑢 ) ) |
| 173 |
162
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) → 0 ≤ ( 𝑏 ‘ 𝑢 ) ) |
| 174 |
173
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) ∧ ¬ 𝑢 ∈ { 𝑌 } ) → 0 ≤ ( 𝑏 ‘ 𝑢 ) ) |
| 175 |
159 160 172 174
|
ifbothda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) → if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏 ‘ 𝑢 ) ) |
| 176 |
175
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ∀ 𝑢 ∈ 𝐼 if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏 ‘ 𝑢 ) ) |
| 177 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝐼 ∈ 𝑉 ) |
| 178 |
143
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) → 1 ∈ ℕ0 ) |
| 179 |
141
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) → 0 ∈ ℕ0 ) |
| 180 |
178 179
|
ifexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) → if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ∈ V ) |
| 181 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) ∧ 𝑢 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑢 ) ∈ V ) |
| 182 |
|
indval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ { 𝑌 } ⊆ 𝐼 ) → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) = ( 𝑢 ∈ 𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) ) |
| 183 |
8 68 182
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ { 𝑌 } ) = ( 𝑢 ∈ 𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) ) |
| 184 |
7 183
|
eqtrid |
⊢ ( 𝜑 → 𝐴 = ( 𝑢 ∈ 𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) ) |
| 185 |
184
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝐴 = ( 𝑢 ∈ 𝐼 ↦ if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ) ) |
| 186 |
53
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 = ( 𝑢 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑢 ) ) ) |
| 187 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝑏 = ( 𝑢 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑢 ) ) ) |
| 188 |
177 180 181 185 187
|
ofrfval2 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝐴 ∘r ≤ 𝑏 ↔ ∀ 𝑢 ∈ 𝐼 if ( 𝑢 ∈ { 𝑌 } , 1 , 0 ) ≤ ( 𝑏 ‘ 𝑢 ) ) ) |
| 189 |
176 188
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝐴 ∘r ≤ 𝑏 ) |
| 190 |
134 158 189
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝐴 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ) |
| 191 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) , 0 ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) , 0 ) ) |
| 192 |
82
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 193 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝑏 ∈ 𝐷 ) |
| 194 |
146
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → 𝐴 : 𝐼 ⟶ ℕ0 ) |
| 195 |
13
|
psrbagcon |
⊢ ( ( 𝑏 ∈ 𝐷 ∧ 𝐴 : 𝐼 ⟶ ℕ0 ∧ 𝐴 ∘r ≤ 𝑏 ) → ( ( 𝑏 ∘f − 𝐴 ) ∈ 𝐷 ∧ ( 𝑏 ∘f − 𝐴 ) ∘r ≤ 𝑏 ) ) |
| 196 |
195
|
simpld |
⊢ ( ( 𝑏 ∈ 𝐷 ∧ 𝐴 : 𝐼 ⟶ ℕ0 ∧ 𝐴 ∘r ≤ 𝑏 ) → ( 𝑏 ∘f − 𝐴 ) ∈ 𝐷 ) |
| 197 |
193 194 189 196
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑏 ∘f − 𝐴 ) ∈ 𝐷 ) |
| 198 |
192 197
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 199 |
5 132 133 190 191 198
|
gsummptif1n0 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ if ( 𝑥 = 𝐴 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) , 0 ) ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) |
| 200 |
131 199
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ¬ ( 𝑏 ‘ 𝑌 ) = 0 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) |
| 201 |
18 19 101 200
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) = if ( ( 𝑏 ‘ 𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) ) |
| 202 |
201
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ if ( ( 𝑏 ‘ 𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) ) ) |
| 203 |
17 202
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) = ( 𝑏 ∈ 𝐷 ↦ if ( ( 𝑏 ‘ 𝑌 ) = 0 , 0 , ( 𝐹 ‘ ( 𝑏 ∘f − 𝐴 ) ) ) ) ) |