| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlscafv.1 |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
| 2 |
|
evlscafv.2 |
⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) |
| 3 |
|
evlscafv.3 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evlscafv.4 |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 5 |
|
evlscafv.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
evlscafv.6 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 7 |
|
evlscafv.7 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
evlscafv.8 |
⊢ ( 𝜑 → 𝐿 : 𝐼 ⟶ 𝐵 ) |
| 9 |
1 2 3 4 5 6 7
|
evlsca |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 10 |
9
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = ( ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) ) |
| 11 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 13 |
12 5 8
|
elmapdd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 14 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐿 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 ) |
| 15 |
7 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 ) |
| 16 |
10 15
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) |