Metamath Proof Explorer


Theorem evlscaval

Description: Polynomial evaluation for scalars. See evlsscaval . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses evlscafv.1 𝑄 = ( 𝐼 eval 𝑅 )
evlscafv.2 𝑊 = ( 𝐼 mPoly 𝑅 )
evlscafv.3 𝐵 = ( Base ‘ 𝑅 )
evlscafv.4 𝐴 = ( algSc ‘ 𝑊 )
evlscafv.5 ( 𝜑𝐼𝑉 )
evlscafv.6 ( 𝜑𝑅 ∈ CRing )
evlscafv.7 ( 𝜑𝑋𝐵 )
evlscafv.8 ( 𝜑𝐿 : 𝐼𝐵 )
Assertion evlscaval ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐿 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 evlscafv.1 𝑄 = ( 𝐼 eval 𝑅 )
2 evlscafv.2 𝑊 = ( 𝐼 mPoly 𝑅 )
3 evlscafv.3 𝐵 = ( Base ‘ 𝑅 )
4 evlscafv.4 𝐴 = ( algSc ‘ 𝑊 )
5 evlscafv.5 ( 𝜑𝐼𝑉 )
6 evlscafv.6 ( 𝜑𝑅 ∈ CRing )
7 evlscafv.7 ( 𝜑𝑋𝐵 )
8 evlscafv.8 ( 𝜑𝐿 : 𝐼𝐵 )
9 1 2 3 4 5 6 7 evlsca ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( ( 𝐵m 𝐼 ) × { 𝑋 } ) )
10 9 fveq1d ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐿 ) = ( ( ( 𝐵m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) )
11 3 fvexi 𝐵 ∈ V
12 11 a1i ( 𝜑𝐵 ∈ V )
13 12 5 8 elmapdd ( 𝜑𝐿 ∈ ( 𝐵m 𝐼 ) )
14 fvconst2g ( ( 𝑋𝐵𝐿 ∈ ( 𝐵m 𝐼 ) ) → ( ( ( 𝐵m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 )
15 7 13 14 syl2anc ( 𝜑 → ( ( ( 𝐵m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 )
16 10 15 eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐿 ) = 𝑋 )