Metamath Proof Explorer


Theorem evlscaval

Description: Polynomial evaluation for scalars. See evlsscaval . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses evlscafv.1
|- Q = ( I eval R )
evlscafv.2
|- W = ( I mPoly R )
evlscafv.3
|- B = ( Base ` R )
evlscafv.4
|- A = ( algSc ` W )
evlscafv.5
|- ( ph -> I e. V )
evlscafv.6
|- ( ph -> R e. CRing )
evlscafv.7
|- ( ph -> X e. B )
evlscafv.8
|- ( ph -> L : I --> B )
Assertion evlscaval
|- ( ph -> ( ( Q ` ( A ` X ) ) ` L ) = X )

Proof

Step Hyp Ref Expression
1 evlscafv.1
 |-  Q = ( I eval R )
2 evlscafv.2
 |-  W = ( I mPoly R )
3 evlscafv.3
 |-  B = ( Base ` R )
4 evlscafv.4
 |-  A = ( algSc ` W )
5 evlscafv.5
 |-  ( ph -> I e. V )
6 evlscafv.6
 |-  ( ph -> R e. CRing )
7 evlscafv.7
 |-  ( ph -> X e. B )
8 evlscafv.8
 |-  ( ph -> L : I --> B )
9 1 2 3 4 5 6 7 evlsca
 |-  ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) )
10 9 fveq1d
 |-  ( ph -> ( ( Q ` ( A ` X ) ) ` L ) = ( ( ( B ^m I ) X. { X } ) ` L ) )
11 3 fvexi
 |-  B e. _V
12 11 a1i
 |-  ( ph -> B e. _V )
13 12 5 8 elmapdd
 |-  ( ph -> L e. ( B ^m I ) )
14 fvconst2g
 |-  ( ( X e. B /\ L e. ( B ^m I ) ) -> ( ( ( B ^m I ) X. { X } ) ` L ) = X )
15 7 13 14 syl2anc
 |-  ( ph -> ( ( ( B ^m I ) X. { X } ) ` L ) = X )
16 10 15 eqtrd
 |-  ( ph -> ( ( Q ` ( A ` X ) ) ` L ) = X )