| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlvarval.1 |
|- Q = ( I eval S ) |
| 2 |
|
evlvarval.2 |
|- P = ( I mPoly S ) |
| 3 |
|
evlvarval.3 |
|- K = ( Base ` S ) |
| 4 |
|
evlvarval.4 |
|- B = ( Base ` P ) |
| 5 |
|
evlvarval.5 |
|- .xb = ( .r ` P ) |
| 6 |
|
evlvarval.6 |
|- .x. = ( .r ` S ) |
| 7 |
|
evlvarval.7 |
|- ( ph -> I e. Z ) |
| 8 |
|
evlvarval.8 |
|- ( ph -> S e. CRing ) |
| 9 |
|
evlvarval.9 |
|- ( ph -> A e. ( K ^m I ) ) |
| 10 |
|
evlvarval.10 |
|- V = ( I mVar S ) |
| 11 |
|
evlvarval.11 |
|- ( ph -> X e. I ) |
| 12 |
8
|
crngringd |
|- ( ph -> S e. Ring ) |
| 13 |
2 10 4 7 12 11
|
mvrcl |
|- ( ph -> ( V ` X ) e. B ) |
| 14 |
|
fveq1 |
|- ( a = A -> ( a ` X ) = ( A ` X ) ) |
| 15 |
1 10 3 7 8 11
|
evlvar |
|- ( ph -> ( Q ` ( V ` X ) ) = ( a e. ( K ^m I ) |-> ( a ` X ) ) ) |
| 16 |
3
|
fvexi |
|- K e. _V |
| 17 |
16
|
a1i |
|- ( ph -> K e. _V ) |
| 18 |
7 17 9
|
elmaprd |
|- ( ph -> A : I --> K ) |
| 19 |
18 11
|
ffvelcdmd |
|- ( ph -> ( A ` X ) e. K ) |
| 20 |
14 15 9 19
|
fvmptd4 |
|- ( ph -> ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) |
| 21 |
13 20
|
jca |
|- ( ph -> ( ( V ` X ) e. B /\ ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) ) |