| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlextv.q |
|- Q = ( I eval R ) |
| 2 |
|
evlextv.o |
|- O = ( J eval R ) |
| 3 |
|
evlextv.j |
|- J = ( I \ { Y } ) |
| 4 |
|
evlextv.m |
|- M = ( Base ` ( J mPoly R ) ) |
| 5 |
|
evlextv.b |
|- B = ( Base ` R ) |
| 6 |
|
evlextv.e |
|- E = ( I extendVars R ) |
| 7 |
|
evlextv.r |
|- ( ph -> R e. CRing ) |
| 8 |
|
evlextv.i |
|- ( ph -> I e. V ) |
| 9 |
|
evlextv.y |
|- ( ph -> Y e. I ) |
| 10 |
|
evlextv.f |
|- ( ph -> F e. M ) |
| 11 |
|
evlextv.a |
|- ( ph -> A : I --> B ) |
| 12 |
6
|
fveq1i |
|- ( E ` Y ) = ( ( I extendVars R ) ` Y ) |
| 13 |
12
|
fveq1i |
|- ( ( E ` Y ) ` F ) = ( ( ( I extendVars R ) ` Y ) ` F ) |
| 14 |
13
|
fveq1i |
|- ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) |
| 15 |
14
|
a1i |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) ) |
| 16 |
|
eqid |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> I e. V ) |
| 19 |
7
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> R e. CRing ) |
| 20 |
9
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> Y e. I ) |
| 21 |
10
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> F e. M ) |
| 22 |
|
breq1 |
|- ( h = c -> ( h finSupp 0 <-> c finSupp 0 ) ) |
| 23 |
|
ssrab2 |
|- { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } C_ ( NN0 ^m I ) |
| 24 |
23
|
a1i |
|- ( ph -> { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } C_ ( NN0 ^m I ) ) |
| 25 |
24
|
sselda |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> c e. ( NN0 ^m I ) ) |
| 26 |
|
fveq1 |
|- ( h = c -> ( h ` Y ) = ( c ` Y ) ) |
| 27 |
26
|
eqeq1d |
|- ( h = c -> ( ( h ` Y ) = 0 <-> ( c ` Y ) = 0 ) ) |
| 28 |
22 27
|
anbi12d |
|- ( h = c -> ( ( h finSupp 0 /\ ( h ` Y ) = 0 ) <-> ( c finSupp 0 /\ ( c ` Y ) = 0 ) ) ) |
| 29 |
|
simpr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) |
| 30 |
28 29
|
elrabrd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( c finSupp 0 /\ ( c ` Y ) = 0 ) ) |
| 31 |
30
|
simpld |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> c finSupp 0 ) |
| 32 |
22 25 31
|
elrabd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 33 |
16 17 18 19 20 3 4 21 32
|
extvfvv |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) = if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) ) |
| 34 |
30
|
simprd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( c ` Y ) = 0 ) |
| 35 |
34
|
iftrued |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) = ( F ` ( c |` J ) ) ) |
| 36 |
15 33 35
|
3eqtrd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( F ` ( c |` J ) ) ) |
| 37 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 38 |
37 5
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 39 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 40 |
37 39
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 41 |
37
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 42 |
19 41
|
syl |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( mulGrp ` R ) e. CMnd ) |
| 43 |
|
simpr |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> i e. ( I \ J ) ) |
| 44 |
3
|
difeq2i |
|- ( I \ J ) = ( I \ ( I \ { Y } ) ) |
| 45 |
9
|
snssd |
|- ( ph -> { Y } C_ I ) |
| 46 |
|
dfss4 |
|- ( { Y } C_ I <-> ( I \ ( I \ { Y } ) ) = { Y } ) |
| 47 |
45 46
|
sylib |
|- ( ph -> ( I \ ( I \ { Y } ) ) = { Y } ) |
| 48 |
44 47
|
eqtrid |
|- ( ph -> ( I \ J ) = { Y } ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( I \ J ) = { Y } ) |
| 50 |
43 49
|
eleqtrd |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> i e. { Y } ) |
| 51 |
50
|
elsnd |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> i = Y ) |
| 52 |
51
|
fveq2d |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( c ` i ) = ( c ` Y ) ) |
| 53 |
34
|
adantr |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( c ` Y ) = 0 ) |
| 54 |
52 53
|
eqtrd |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( c ` i ) = 0 ) |
| 55 |
54
|
oveq1d |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) = ( 0 ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) |
| 56 |
11
|
ad2antrr |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> A : I --> B ) |
| 57 |
|
difssd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( I \ J ) C_ I ) |
| 58 |
57
|
sselda |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> i e. I ) |
| 59 |
56 58
|
ffvelcdmd |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( A ` i ) e. B ) |
| 60 |
|
eqid |
|- ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) |
| 61 |
38 40 60
|
mulg0 |
|- ( ( A ` i ) e. B -> ( 0 ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) = ( 1r ` R ) ) |
| 62 |
59 61
|
syl |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( 0 ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) = ( 1r ` R ) ) |
| 63 |
55 62
|
eqtrd |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. ( I \ J ) ) -> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) = ( 1r ` R ) ) |
| 64 |
|
fvexd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( 1r ` R ) e. _V ) |
| 65 |
|
0nn0 |
|- 0 e. NN0 |
| 66 |
65
|
a1i |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> 0 e. NN0 ) |
| 67 |
8
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> I e. V ) |
| 68 |
|
ssidd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> I C_ I ) |
| 69 |
11
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> A : I --> B ) |
| 70 |
69
|
ffvelcdmda |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) /\ i e. I ) -> ( A ` i ) e. B ) |
| 71 |
|
nn0ex |
|- NN0 e. _V |
| 72 |
71
|
a1i |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> NN0 e. _V ) |
| 73 |
|
ssrab2 |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } C_ ( NN0 ^m I ) |
| 74 |
73
|
a1i |
|- ( ph -> { h e. ( NN0 ^m I ) | h finSupp 0 } C_ ( NN0 ^m I ) ) |
| 75 |
74
|
sselda |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> c e. ( NN0 ^m I ) ) |
| 76 |
67 72 75
|
elmaprd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> c : I --> NN0 ) |
| 77 |
|
simpr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 78 |
22 77
|
elrabrd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> c finSupp 0 ) |
| 79 |
38 40 60
|
mulg0 |
|- ( x e. B -> ( 0 ( .g ` ( mulGrp ` R ) ) x ) = ( 1r ` R ) ) |
| 80 |
79
|
adantl |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) /\ x e. B ) -> ( 0 ( .g ` ( mulGrp ` R ) ) x ) = ( 1r ` R ) ) |
| 81 |
64 66 67 68 70 76 78 80
|
fisuppov1 |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) finSupp ( 1r ` R ) ) |
| 82 |
32 81
|
syldan |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) finSupp ( 1r ` R ) ) |
| 83 |
7 41
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( mulGrp ` R ) e. CMnd ) |
| 85 |
84
|
cmnmndd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( mulGrp ` R ) e. Mnd ) |
| 86 |
85
|
adantr |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) /\ i e. I ) -> ( mulGrp ` R ) e. Mnd ) |
| 87 |
76
|
ffvelcdmda |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) /\ i e. I ) -> ( c ` i ) e. NN0 ) |
| 88 |
38 60 86 87 70
|
mulgnn0cld |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) /\ i e. I ) -> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) e. B ) |
| 89 |
32 88
|
syldanl |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. I ) -> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) e. B ) |
| 90 |
|
difss |
|- ( I \ { Y } ) C_ I |
| 91 |
3 90
|
eqsstri |
|- J C_ I |
| 92 |
91
|
a1i |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> J C_ I ) |
| 93 |
38 40 42 18 63 82 89 92
|
gsummptfsres |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) = ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) |
| 94 |
|
simpr |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. J ) -> i e. J ) |
| 95 |
94
|
fvresd |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. J ) -> ( ( c |` J ) ` i ) = ( c ` i ) ) |
| 96 |
94
|
fvresd |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. J ) -> ( ( A |` J ) ` i ) = ( A ` i ) ) |
| 97 |
95 96
|
oveq12d |
|- ( ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ i e. J ) -> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) = ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) |
| 98 |
97
|
mpteq2dva |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) = ( i e. J |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) |
| 99 |
98
|
oveq2d |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) = ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) |
| 100 |
93 99
|
eqtr4d |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) = ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) |
| 101 |
36 100
|
oveq12d |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) = ( ( F ` ( c |` J ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) |
| 102 |
101
|
mpteq2dva |
|- ( ph -> ( c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } |-> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) = ( c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } |-> ( ( F ` ( c |` J ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) ) |
| 103 |
102
|
oveq2d |
|- ( ph -> ( R gsum ( c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } |-> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) ) = ( R gsum ( c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } |-> ( ( F ` ( c |` J ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) ) ) |
| 104 |
7
|
crngringd |
|- ( ph -> R e. Ring ) |
| 105 |
104
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
| 106 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 107 |
106
|
rabex |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } e. _V |
| 108 |
107
|
a1i |
|- ( ph -> { h e. ( NN0 ^m I ) | h finSupp 0 } e. _V ) |
| 109 |
14
|
a1i |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) ) |
| 110 |
8
|
adantr |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> I e. V ) |
| 111 |
7
|
adantr |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> R e. CRing ) |
| 112 |
9
|
adantr |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> Y e. I ) |
| 113 |
10
|
adantr |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> F e. M ) |
| 114 |
|
difssd |
|- ( ph -> ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) C_ { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 115 |
114
|
sselda |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 116 |
16 17 110 111 112 3 4 113 115
|
extvfvv |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) = if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) ) |
| 117 |
115
|
adantr |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 118 |
73 117
|
sselid |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> c e. ( NN0 ^m I ) ) |
| 119 |
22 117
|
elrabrd |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> c finSupp 0 ) |
| 120 |
|
simpr |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> ( c ` Y ) = 0 ) |
| 121 |
119 120
|
jca |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> ( c finSupp 0 /\ ( c ` Y ) = 0 ) ) |
| 122 |
28 118 121
|
elrabd |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) |
| 123 |
|
simplr |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) |
| 124 |
123
|
eldifbd |
|- ( ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) /\ ( c ` Y ) = 0 ) -> -. c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) |
| 125 |
122 124
|
pm2.65da |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> -. ( c ` Y ) = 0 ) |
| 126 |
125
|
iffalsed |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 127 |
109 116 126
|
3eqtrd |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( 0g ` R ) ) |
| 128 |
127
|
oveq1d |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) = ( ( 0g ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) |
| 129 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 130 |
104
|
adantr |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> R e. Ring ) |
| 131 |
88
|
fmpttd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) : I --> B ) |
| 132 |
38 40 84 67 131 81
|
gsumcl |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) e. B ) |
| 133 |
115 132
|
syldan |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) e. B ) |
| 134 |
5 129 17 130 133
|
ringlzd |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( 0g ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) = ( 0g ` R ) ) |
| 135 |
128 134
|
eqtrd |
|- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) = ( 0g ` R ) ) |
| 136 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 137 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
| 138 |
16
|
psrbasfsupp |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 139 |
16 17 8 104 5 3 4 9 10 137
|
extvfvcl |
|- ( ph -> ( ( ( I extendVars R ) ` Y ) ` F ) e. ( Base ` ( I mPoly R ) ) ) |
| 140 |
13 139
|
eqeltrid |
|- ( ph -> ( ( E ` Y ) ` F ) e. ( Base ` ( I mPoly R ) ) ) |
| 141 |
136 5 137 138 140
|
mplelf |
|- ( ph -> ( ( E ` Y ) ` F ) : { h e. ( NN0 ^m I ) | h finSupp 0 } --> B ) |
| 142 |
136 137 17 140
|
mplelsfi |
|- ( ph -> ( ( E ` Y ) ` F ) finSupp ( 0g ` R ) ) |
| 143 |
5 104 108 132 141 142
|
rmfsupp2 |
|- ( ph -> ( c e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) finSupp ( 0g ` R ) ) |
| 144 |
104
|
adantr |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> R e. Ring ) |
| 145 |
141
|
ffvelcdmda |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( ( ( E ` Y ) ` F ) ` c ) e. B ) |
| 146 |
5 129 144 145 132
|
ringcld |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) e. B ) |
| 147 |
|
simpl |
|- ( ( h finSupp 0 /\ ( h ` Y ) = 0 ) -> h finSupp 0 ) |
| 148 |
147
|
a1i |
|- ( ( ph /\ h e. ( NN0 ^m I ) ) -> ( ( h finSupp 0 /\ ( h ` Y ) = 0 ) -> h finSupp 0 ) ) |
| 149 |
148
|
ss2rabdv |
|- ( ph -> { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } C_ { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 150 |
5 17 105 108 135 143 146 149
|
gsummptfsres |
|- ( ph -> ( R gsum ( c e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) ) = ( R gsum ( c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } |-> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) ) ) |
| 151 |
|
nfcv |
|- F/_ b ( ( F ` ( c |` J ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) |
| 152 |
|
fveq2 |
|- ( b = ( c |` J ) -> ( F ` b ) = ( F ` ( c |` J ) ) ) |
| 153 |
|
fveq1 |
|- ( b = ( c |` J ) -> ( b ` i ) = ( ( c |` J ) ` i ) ) |
| 154 |
153
|
oveq1d |
|- ( b = ( c |` J ) -> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) = ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) |
| 155 |
154
|
mpteq2dv |
|- ( b = ( c |` J ) -> ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) = ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) |
| 156 |
155
|
oveq2d |
|- ( b = ( c |` J ) -> ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) = ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) |
| 157 |
152 156
|
oveq12d |
|- ( b = ( c |` J ) -> ( ( F ` b ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) = ( ( F ` ( c |` J ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) |
| 158 |
|
ovex |
|- ( NN0 ^m J ) e. _V |
| 159 |
158
|
rabex |
|- { h e. ( NN0 ^m J ) | h finSupp 0 } e. _V |
| 160 |
159
|
a1i |
|- ( ph -> { h e. ( NN0 ^m J ) | h finSupp 0 } e. _V ) |
| 161 |
|
eqid |
|- ( J mPoly R ) = ( J mPoly R ) |
| 162 |
|
eqid |
|- { h e. ( NN0 ^m J ) | h finSupp 0 } = { h e. ( NN0 ^m J ) | h finSupp 0 } |
| 163 |
162
|
psrbasfsupp |
|- { h e. ( NN0 ^m J ) | h finSupp 0 } = { h e. ( NN0 ^m J ) | ( `' h " NN ) e. Fin } |
| 164 |
161 5 4 163 10
|
mplelf |
|- ( ph -> F : { h e. ( NN0 ^m J ) | h finSupp 0 } --> B ) |
| 165 |
164
|
feqmptd |
|- ( ph -> F = ( b e. { h e. ( NN0 ^m J ) | h finSupp 0 } |-> ( F ` b ) ) ) |
| 166 |
161 4 17 10
|
mplelsfi |
|- ( ph -> F finSupp ( 0g ` R ) ) |
| 167 |
165 166
|
eqbrtrrd |
|- ( ph -> ( b e. { h e. ( NN0 ^m J ) | h finSupp 0 } |-> ( F ` b ) ) finSupp ( 0g ` R ) ) |
| 168 |
104
|
adantr |
|- ( ( ph /\ x e. B ) -> R e. Ring ) |
| 169 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 170 |
5 129 17 168 169
|
ringlzd |
|- ( ( ph /\ x e. B ) -> ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) ) |
| 171 |
164
|
ffvelcdmda |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( F ` b ) e. B ) |
| 172 |
83
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( mulGrp ` R ) e. CMnd ) |
| 173 |
91
|
a1i |
|- ( ph -> J C_ I ) |
| 174 |
8 173
|
ssexd |
|- ( ph -> J e. _V ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> J e. _V ) |
| 176 |
172
|
cmnmndd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( mulGrp ` R ) e. Mnd ) |
| 177 |
176
|
adantr |
|- ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ i e. J ) -> ( mulGrp ` R ) e. Mnd ) |
| 178 |
71
|
a1i |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> NN0 e. _V ) |
| 179 |
|
ssrab2 |
|- { h e. ( NN0 ^m J ) | h finSupp 0 } C_ ( NN0 ^m J ) |
| 180 |
179
|
a1i |
|- ( ph -> { h e. ( NN0 ^m J ) | h finSupp 0 } C_ ( NN0 ^m J ) ) |
| 181 |
180
|
sselda |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> b e. ( NN0 ^m J ) ) |
| 182 |
175 178 181
|
elmaprd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> b : J --> NN0 ) |
| 183 |
182
|
ffvelcdmda |
|- ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ i e. J ) -> ( b ` i ) e. NN0 ) |
| 184 |
11
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> A : I --> B ) |
| 185 |
91
|
a1i |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> J C_ I ) |
| 186 |
184 185
|
fssresd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( A |` J ) : J --> B ) |
| 187 |
186
|
ffvelcdmda |
|- ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ i e. J ) -> ( ( A |` J ) ` i ) e. B ) |
| 188 |
38 60 177 183 187
|
mulgnn0cld |
|- ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ i e. J ) -> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) e. B ) |
| 189 |
188
|
fmpttd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) : J --> B ) |
| 190 |
182
|
feqmptd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> b = ( i e. J |-> ( b ` i ) ) ) |
| 191 |
|
breq1 |
|- ( h = b -> ( h finSupp 0 <-> b finSupp 0 ) ) |
| 192 |
|
simpr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) |
| 193 |
191 192
|
elrabrd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> b finSupp 0 ) |
| 194 |
190 193
|
eqbrtrrd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( i e. J |-> ( b ` i ) ) finSupp 0 ) |
| 195 |
79
|
adantl |
|- ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ x e. B ) -> ( 0 ( .g ` ( mulGrp ` R ) ) x ) = ( 1r ` R ) ) |
| 196 |
|
fvexd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( 1r ` R ) e. _V ) |
| 197 |
194 195 183 187 196
|
fsuppssov1 |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) finSupp ( 1r ` R ) ) |
| 198 |
38 40 172 175 189 197
|
gsumcl |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) e. B ) |
| 199 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
| 200 |
167 170 171 198 199
|
fsuppssov1 |
|- ( ph -> ( b e. { h e. ( NN0 ^m J ) | h finSupp 0 } |-> ( ( F ` b ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) finSupp ( 0g ` R ) ) |
| 201 |
|
ssidd |
|- ( ph -> B C_ B ) |
| 202 |
104
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> R e. Ring ) |
| 203 |
5 129 202 171 198
|
ringcld |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( ( F ` b ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) e. B ) |
| 204 |
|
breq1 |
|- ( h = ( c |` J ) -> ( h finSupp 0 <-> ( c |` J ) finSupp 0 ) ) |
| 205 |
25 92
|
elmapssresd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( c |` J ) e. ( NN0 ^m J ) ) |
| 206 |
65
|
a1i |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> 0 e. NN0 ) |
| 207 |
31 206
|
fsuppres |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( c |` J ) finSupp 0 ) |
| 208 |
204 205 207
|
elrabd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( c |` J ) e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) |
| 209 |
|
breq1 |
|- ( h = ( b u. { <. Y , 0 >. } ) -> ( h finSupp 0 <-> ( b u. { <. Y , 0 >. } ) finSupp 0 ) ) |
| 210 |
|
fveq1 |
|- ( h = ( b u. { <. Y , 0 >. } ) -> ( h ` Y ) = ( ( b u. { <. Y , 0 >. } ) ` Y ) ) |
| 211 |
210
|
eqeq1d |
|- ( h = ( b u. { <. Y , 0 >. } ) -> ( ( h ` Y ) = 0 <-> ( ( b u. { <. Y , 0 >. } ) ` Y ) = 0 ) ) |
| 212 |
209 211
|
anbi12d |
|- ( h = ( b u. { <. Y , 0 >. } ) -> ( ( h finSupp 0 /\ ( h ` Y ) = 0 ) <-> ( ( b u. { <. Y , 0 >. } ) finSupp 0 /\ ( ( b u. { <. Y , 0 >. } ) ` Y ) = 0 ) ) ) |
| 213 |
8
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> I e. V ) |
| 214 |
3
|
uneq1i |
|- ( J u. { Y } ) = ( ( I \ { Y } ) u. { Y } ) |
| 215 |
|
undifr |
|- ( { Y } C_ I <-> ( ( I \ { Y } ) u. { Y } ) = I ) |
| 216 |
45 215
|
sylib |
|- ( ph -> ( ( I \ { Y } ) u. { Y } ) = I ) |
| 217 |
214 216
|
eqtrid |
|- ( ph -> ( J u. { Y } ) = I ) |
| 218 |
217
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( J u. { Y } ) = I ) |
| 219 |
65
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 220 |
9 219
|
fsnd |
|- ( ph -> { <. Y , 0 >. } : { Y } --> NN0 ) |
| 221 |
220
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> { <. Y , 0 >. } : { Y } --> NN0 ) |
| 222 |
3
|
ineq1i |
|- ( J i^i { Y } ) = ( ( I \ { Y } ) i^i { Y } ) |
| 223 |
|
disjdifr |
|- ( ( I \ { Y } ) i^i { Y } ) = (/) |
| 224 |
222 223
|
eqtri |
|- ( J i^i { Y } ) = (/) |
| 225 |
224
|
a1i |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( J i^i { Y } ) = (/) ) |
| 226 |
182 221 225
|
fun2d |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( b u. { <. Y , 0 >. } ) : ( J u. { Y } ) --> NN0 ) |
| 227 |
218 226
|
feq2dd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( b u. { <. Y , 0 >. } ) : I --> NN0 ) |
| 228 |
178 213 227
|
elmapdd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( b u. { <. Y , 0 >. } ) e. ( NN0 ^m I ) ) |
| 229 |
9 65
|
jctir |
|- ( ph -> ( Y e. I /\ 0 e. NN0 ) ) |
| 230 |
229
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( Y e. I /\ 0 e. NN0 ) ) |
| 231 |
182
|
ffund |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> Fun b ) |
| 232 |
|
neldifsnd |
|- ( ph -> -. Y e. ( I \ { Y } ) ) |
| 233 |
3
|
eleq2i |
|- ( Y e. J <-> Y e. ( I \ { Y } ) ) |
| 234 |
232 233
|
sylnibr |
|- ( ph -> -. Y e. J ) |
| 235 |
234
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> -. Y e. J ) |
| 236 |
182
|
fdmd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> dom b = J ) |
| 237 |
235 236
|
neleqtrrd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> -. Y e. dom b ) |
| 238 |
|
df-nel |
|- ( Y e/ dom b <-> -. Y e. dom b ) |
| 239 |
237 238
|
sylibr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> Y e/ dom b ) |
| 240 |
231 239
|
jca |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( Fun b /\ Y e/ dom b ) ) |
| 241 |
|
funsnfsupp |
|- ( ( ( Y e. I /\ 0 e. NN0 ) /\ ( Fun b /\ Y e/ dom b ) ) -> ( ( b u. { <. Y , 0 >. } ) finSupp 0 <-> b finSupp 0 ) ) |
| 242 |
241
|
biimpar |
|- ( ( ( ( Y e. I /\ 0 e. NN0 ) /\ ( Fun b /\ Y e/ dom b ) ) /\ b finSupp 0 ) -> ( b u. { <. Y , 0 >. } ) finSupp 0 ) |
| 243 |
230 240 193 242
|
syl21anc |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( b u. { <. Y , 0 >. } ) finSupp 0 ) |
| 244 |
9
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> Y e. I ) |
| 245 |
65
|
a1i |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> 0 e. NN0 ) |
| 246 |
|
fsnunfv |
|- ( ( Y e. I /\ 0 e. NN0 /\ -. Y e. dom b ) -> ( ( b u. { <. Y , 0 >. } ) ` Y ) = 0 ) |
| 247 |
244 245 237 246
|
syl3anc |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( ( b u. { <. Y , 0 >. } ) ` Y ) = 0 ) |
| 248 |
243 247
|
jca |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( ( b u. { <. Y , 0 >. } ) finSupp 0 /\ ( ( b u. { <. Y , 0 >. } ) ` Y ) = 0 ) ) |
| 249 |
212 228 248
|
elrabd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> ( b u. { <. Y , 0 >. } ) e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) |
| 250 |
|
simpr |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> b = ( c |` J ) ) |
| 251 |
250
|
uneq1d |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> ( b u. { <. Y , 0 >. } ) = ( ( c |` J ) u. { <. Y , 0 >. } ) ) |
| 252 |
3
|
reseq2i |
|- ( c |` J ) = ( c |` ( I \ { Y } ) ) |
| 253 |
252
|
uneq1i |
|- ( ( c |` J ) u. { <. Y , 0 >. } ) = ( ( c |` ( I \ { Y } ) ) u. { <. Y , 0 >. } ) |
| 254 |
253
|
a1i |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> ( ( c |` J ) u. { <. Y , 0 >. } ) = ( ( c |` ( I \ { Y } ) ) u. { <. Y , 0 >. } ) ) |
| 255 |
71
|
a1i |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> NN0 e. _V ) |
| 256 |
18 255 25
|
elmaprd |
|- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> c : I --> NN0 ) |
| 257 |
256
|
ad4ant13 |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> c : I --> NN0 ) |
| 258 |
257
|
ffnd |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> c Fn I ) |
| 259 |
244
|
ad2antrr |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> Y e. I ) |
| 260 |
30
|
ad4ant13 |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> ( c finSupp 0 /\ ( c ` Y ) = 0 ) ) |
| 261 |
260
|
simprd |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> ( c ` Y ) = 0 ) |
| 262 |
|
fresunsn |
|- ( ( c Fn I /\ Y e. I /\ ( c ` Y ) = 0 ) -> ( ( c |` ( I \ { Y } ) ) u. { <. Y , 0 >. } ) = c ) |
| 263 |
258 259 261 262
|
syl3anc |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> ( ( c |` ( I \ { Y } ) ) u. { <. Y , 0 >. } ) = c ) |
| 264 |
251 254 263
|
3eqtrrd |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ b = ( c |` J ) ) -> c = ( b u. { <. Y , 0 >. } ) ) |
| 265 |
|
simpr |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ c = ( b u. { <. Y , 0 >. } ) ) -> c = ( b u. { <. Y , 0 >. } ) ) |
| 266 |
265
|
reseq1d |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ c = ( b u. { <. Y , 0 >. } ) ) -> ( c |` J ) = ( ( b u. { <. Y , 0 >. } ) |` J ) ) |
| 267 |
182
|
ad2antrr |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ c = ( b u. { <. Y , 0 >. } ) ) -> b : J --> NN0 ) |
| 268 |
267
|
ffnd |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ c = ( b u. { <. Y , 0 >. } ) ) -> b Fn J ) |
| 269 |
235
|
ad2antrr |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ c = ( b u. { <. Y , 0 >. } ) ) -> -. Y e. J ) |
| 270 |
|
fsnunres |
|- ( ( b Fn J /\ -. Y e. J ) -> ( ( b u. { <. Y , 0 >. } ) |` J ) = b ) |
| 271 |
268 269 270
|
syl2anc |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ c = ( b u. { <. Y , 0 >. } ) ) -> ( ( b u. { <. Y , 0 >. } ) |` J ) = b ) |
| 272 |
266 271
|
eqtr2d |
|- ( ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) /\ c = ( b u. { <. Y , 0 >. } ) ) -> b = ( c |` J ) ) |
| 273 |
264 272
|
impbida |
|- ( ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( b = ( c |` J ) <-> c = ( b u. { <. Y , 0 >. } ) ) ) |
| 274 |
249 273
|
reu6dv |
|- ( ( ph /\ b e. { h e. ( NN0 ^m J ) | h finSupp 0 } ) -> E! c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } b = ( c |` J ) ) |
| 275 |
151 5 17 157 105 160 200 201 203 208 274
|
gsummptfsf1o |
|- ( ph -> ( R gsum ( b e. { h e. ( NN0 ^m J ) | h finSupp 0 } |-> ( ( F ` b ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) ) = ( R gsum ( c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } |-> ( ( F ` ( c |` J ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( ( c |` J ) ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) ) ) |
| 276 |
103 150 275
|
3eqtr4d |
|- ( ph -> ( R gsum ( c e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) ) = ( R gsum ( b e. { h e. ( NN0 ^m J ) | h finSupp 0 } |-> ( ( F ` b ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) ) ) |
| 277 |
1 5
|
evlval |
|- Q = ( ( I evalSub R ) ` B ) |
| 278 |
|
eqid |
|- ( I mPoly ( R |`s B ) ) = ( I mPoly ( R |`s B ) ) |
| 279 |
|
eqid |
|- ( Base ` ( I mPoly ( R |`s B ) ) ) = ( Base ` ( I mPoly ( R |`s B ) ) ) |
| 280 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
| 281 |
5
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| 282 |
104 281
|
syl |
|- ( ph -> B e. ( SubRing ` R ) ) |
| 283 |
5
|
ressid |
|- ( R e. CRing -> ( R |`s B ) = R ) |
| 284 |
7 283
|
syl |
|- ( ph -> ( R |`s B ) = R ) |
| 285 |
284
|
oveq2d |
|- ( ph -> ( I mPoly ( R |`s B ) ) = ( I mPoly R ) ) |
| 286 |
285
|
fveq2d |
|- ( ph -> ( Base ` ( I mPoly ( R |`s B ) ) ) = ( Base ` ( I mPoly R ) ) ) |
| 287 |
140 286
|
eleqtrrd |
|- ( ph -> ( ( E ` Y ) ` F ) e. ( Base ` ( I mPoly ( R |`s B ) ) ) ) |
| 288 |
5
|
fvexi |
|- B e. _V |
| 289 |
288
|
a1i |
|- ( ph -> B e. _V ) |
| 290 |
289 8 11
|
elmapdd |
|- ( ph -> A e. ( B ^m I ) ) |
| 291 |
277 278 279 280 138 5 37 60 129 8 7 282 287 290
|
evlsvvval |
|- ( ph -> ( ( Q ` ( ( E ` Y ) ` F ) ) ` A ) = ( R gsum ( c e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( ( ( ( E ` Y ) ` F ) ` c ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. I |-> ( ( c ` i ) ( .g ` ( mulGrp ` R ) ) ( A ` i ) ) ) ) ) ) ) ) |
| 292 |
2 5
|
evlval |
|- O = ( ( J evalSub R ) ` B ) |
| 293 |
|
eqid |
|- ( J mPoly ( R |`s B ) ) = ( J mPoly ( R |`s B ) ) |
| 294 |
|
eqid |
|- ( Base ` ( J mPoly ( R |`s B ) ) ) = ( Base ` ( J mPoly ( R |`s B ) ) ) |
| 295 |
10 4
|
eleqtrdi |
|- ( ph -> F e. ( Base ` ( J mPoly R ) ) ) |
| 296 |
284
|
oveq2d |
|- ( ph -> ( J mPoly ( R |`s B ) ) = ( J mPoly R ) ) |
| 297 |
296
|
fveq2d |
|- ( ph -> ( Base ` ( J mPoly ( R |`s B ) ) ) = ( Base ` ( J mPoly R ) ) ) |
| 298 |
295 297
|
eleqtrrd |
|- ( ph -> F e. ( Base ` ( J mPoly ( R |`s B ) ) ) ) |
| 299 |
290 173
|
elmapssresd |
|- ( ph -> ( A |` J ) e. ( B ^m J ) ) |
| 300 |
292 293 294 280 163 5 37 60 129 174 7 282 298 299
|
evlsvvval |
|- ( ph -> ( ( O ` F ) ` ( A |` J ) ) = ( R gsum ( b e. { h e. ( NN0 ^m J ) | h finSupp 0 } |-> ( ( F ` b ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( i e. J |-> ( ( b ` i ) ( .g ` ( mulGrp ` R ) ) ( ( A |` J ) ` i ) ) ) ) ) ) ) ) |
| 301 |
276 291 300
|
3eqtr4d |
|- ( ph -> ( ( Q ` ( ( E ` Y ) ` F ) ) ` A ) = ( ( O ` F ) ` ( A |` J ) ) ) |