Metamath Proof Explorer


Theorem evlextv

Description: Evaluating a variable-extended polynomial is the same as evaluating the polynomial in the original set of variables (in both cases, the additionial variable is ignored). (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses evlextv.q Q = I eval R
evlextv.o O = J eval R
evlextv.j J = I Y
evlextv.m M = Base J mPoly R
evlextv.b B = Base R
evlextv.e No typesetting found for |- E = ( I extendVars R ) with typecode |-
evlextv.r φ R CRing
evlextv.i φ I V
evlextv.y φ Y I
evlextv.f φ F M
evlextv.a φ A : I B
Assertion evlextv φ Q E Y F A = O F A J

Proof

Step Hyp Ref Expression
1 evlextv.q Q = I eval R
2 evlextv.o O = J eval R
3 evlextv.j J = I Y
4 evlextv.m M = Base J mPoly R
5 evlextv.b B = Base R
6 evlextv.e Could not format E = ( I extendVars R ) : No typesetting found for |- E = ( I extendVars R ) with typecode |-
7 evlextv.r φ R CRing
8 evlextv.i φ I V
9 evlextv.y φ Y I
10 evlextv.f φ F M
11 evlextv.a φ A : I B
12 6 fveq1i Could not format ( E ` Y ) = ( ( I extendVars R ) ` Y ) : No typesetting found for |- ( E ` Y ) = ( ( I extendVars R ) ` Y ) with typecode |-
13 12 fveq1i Could not format ( ( E ` Y ) ` F ) = ( ( ( I extendVars R ) ` Y ) ` F ) : No typesetting found for |- ( ( E ` Y ) ` F ) = ( ( ( I extendVars R ) ` Y ) ` F ) with typecode |-
14 13 fveq1i Could not format ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) : No typesetting found for |- ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) with typecode |-
15 14 a1i Could not format ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) ) : No typesetting found for |- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) ) with typecode |-
16 eqid h 0 I | finSupp 0 h = h 0 I | finSupp 0 h
17 eqid 0 R = 0 R
18 8 adantr φ c h 0 I | finSupp 0 h h Y = 0 I V
19 7 adantr φ c h 0 I | finSupp 0 h h Y = 0 R CRing
20 9 adantr φ c h 0 I | finSupp 0 h h Y = 0 Y I
21 10 adantr φ c h 0 I | finSupp 0 h h Y = 0 F M
22 breq1 h = c finSupp 0 h finSupp 0 c
23 ssrab2 h 0 I | finSupp 0 h h Y = 0 0 I
24 23 a1i φ h 0 I | finSupp 0 h h Y = 0 0 I
25 24 sselda φ c h 0 I | finSupp 0 h h Y = 0 c 0 I
26 fveq1 h = c h Y = c Y
27 26 eqeq1d h = c h Y = 0 c Y = 0
28 22 27 anbi12d h = c finSupp 0 h h Y = 0 finSupp 0 c c Y = 0
29 simpr φ c h 0 I | finSupp 0 h h Y = 0 c h 0 I | finSupp 0 h h Y = 0
30 28 29 elrabrd φ c h 0 I | finSupp 0 h h Y = 0 finSupp 0 c c Y = 0
31 30 simpld φ c h 0 I | finSupp 0 h h Y = 0 finSupp 0 c
32 22 25 31 elrabd φ c h 0 I | finSupp 0 h h Y = 0 c h 0 I | finSupp 0 h
33 16 17 18 19 20 3 4 21 32 extvfvv Could not format ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) = if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) ) : No typesetting found for |- ( ( ph /\ c e. { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) -> ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) = if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) ) with typecode |-
34 30 simprd φ c h 0 I | finSupp 0 h h Y = 0 c Y = 0
35 34 iftrued φ c h 0 I | finSupp 0 h h Y = 0 if c Y = 0 F c J 0 R = F c J
36 15 33 35 3eqtrd φ c h 0 I | finSupp 0 h h Y = 0 E Y F c = F c J
37 eqid mulGrp R = mulGrp R
38 37 5 mgpbas B = Base mulGrp R
39 eqid 1 R = 1 R
40 37 39 ringidval 1 R = 0 mulGrp R
41 37 crngmgp R CRing mulGrp R CMnd
42 19 41 syl φ c h 0 I | finSupp 0 h h Y = 0 mulGrp R CMnd
43 simpr φ c h 0 I | finSupp 0 h h Y = 0 i I J i I J
44 3 difeq2i I J = I I Y
45 9 snssd φ Y I
46 dfss4 Y I I I Y = Y
47 45 46 sylib φ I I Y = Y
48 44 47 eqtrid φ I J = Y
49 48 ad2antrr φ c h 0 I | finSupp 0 h h Y = 0 i I J I J = Y
50 43 49 eleqtrd φ c h 0 I | finSupp 0 h h Y = 0 i I J i Y
51 50 elsnd φ c h 0 I | finSupp 0 h h Y = 0 i I J i = Y
52 51 fveq2d φ c h 0 I | finSupp 0 h h Y = 0 i I J c i = c Y
53 34 adantr φ c h 0 I | finSupp 0 h h Y = 0 i I J c Y = 0
54 52 53 eqtrd φ c h 0 I | finSupp 0 h h Y = 0 i I J c i = 0
55 54 oveq1d φ c h 0 I | finSupp 0 h h Y = 0 i I J c i mulGrp R A i = 0 mulGrp R A i
56 11 ad2antrr φ c h 0 I | finSupp 0 h h Y = 0 i I J A : I B
57 difssd φ c h 0 I | finSupp 0 h h Y = 0 I J I
58 57 sselda φ c h 0 I | finSupp 0 h h Y = 0 i I J i I
59 56 58 ffvelcdmd φ c h 0 I | finSupp 0 h h Y = 0 i I J A i B
60 eqid mulGrp R = mulGrp R
61 38 40 60 mulg0 A i B 0 mulGrp R A i = 1 R
62 59 61 syl φ c h 0 I | finSupp 0 h h Y = 0 i I J 0 mulGrp R A i = 1 R
63 55 62 eqtrd φ c h 0 I | finSupp 0 h h Y = 0 i I J c i mulGrp R A i = 1 R
64 fvexd φ c h 0 I | finSupp 0 h 1 R V
65 0nn0 0 0
66 65 a1i φ c h 0 I | finSupp 0 h 0 0
67 8 adantr φ c h 0 I | finSupp 0 h I V
68 ssidd φ c h 0 I | finSupp 0 h I I
69 11 adantr φ c h 0 I | finSupp 0 h A : I B
70 69 ffvelcdmda φ c h 0 I | finSupp 0 h i I A i B
71 nn0ex 0 V
72 71 a1i φ c h 0 I | finSupp 0 h 0 V
73 ssrab2 h 0 I | finSupp 0 h 0 I
74 73 a1i φ h 0 I | finSupp 0 h 0 I
75 74 sselda φ c h 0 I | finSupp 0 h c 0 I
76 67 72 75 elmaprd φ c h 0 I | finSupp 0 h c : I 0
77 simpr φ c h 0 I | finSupp 0 h c h 0 I | finSupp 0 h
78 22 77 elrabrd φ c h 0 I | finSupp 0 h finSupp 0 c
79 38 40 60 mulg0 x B 0 mulGrp R x = 1 R
80 79 adantl φ c h 0 I | finSupp 0 h x B 0 mulGrp R x = 1 R
81 64 66 67 68 70 76 78 80 fisuppov1 φ c h 0 I | finSupp 0 h finSupp 1 R i I c i mulGrp R A i
82 32 81 syldan φ c h 0 I | finSupp 0 h h Y = 0 finSupp 1 R i I c i mulGrp R A i
83 7 41 syl φ mulGrp R CMnd
84 83 adantr φ c h 0 I | finSupp 0 h mulGrp R CMnd
85 84 cmnmndd φ c h 0 I | finSupp 0 h mulGrp R Mnd
86 85 adantr φ c h 0 I | finSupp 0 h i I mulGrp R Mnd
87 76 ffvelcdmda φ c h 0 I | finSupp 0 h i I c i 0
88 38 60 86 87 70 mulgnn0cld φ c h 0 I | finSupp 0 h i I c i mulGrp R A i B
89 32 88 syldanl φ c h 0 I | finSupp 0 h h Y = 0 i I c i mulGrp R A i B
90 difss I Y I
91 3 90 eqsstri J I
92 91 a1i φ c h 0 I | finSupp 0 h h Y = 0 J I
93 38 40 42 18 63 82 89 92 gsummptfsres φ c h 0 I | finSupp 0 h h Y = 0 mulGrp R i I c i mulGrp R A i = mulGrp R i J c i mulGrp R A i
94 simpr φ c h 0 I | finSupp 0 h h Y = 0 i J i J
95 94 fvresd φ c h 0 I | finSupp 0 h h Y = 0 i J c J i = c i
96 94 fvresd φ c h 0 I | finSupp 0 h h Y = 0 i J A J i = A i
97 95 96 oveq12d φ c h 0 I | finSupp 0 h h Y = 0 i J c J i mulGrp R A J i = c i mulGrp R A i
98 97 mpteq2dva φ c h 0 I | finSupp 0 h h Y = 0 i J c J i mulGrp R A J i = i J c i mulGrp R A i
99 98 oveq2d φ c h 0 I | finSupp 0 h h Y = 0 mulGrp R i J c J i mulGrp R A J i = mulGrp R i J c i mulGrp R A i
100 93 99 eqtr4d φ c h 0 I | finSupp 0 h h Y = 0 mulGrp R i I c i mulGrp R A i = mulGrp R i J c J i mulGrp R A J i
101 36 100 oveq12d φ c h 0 I | finSupp 0 h h Y = 0 E Y F c R mulGrp R i I c i mulGrp R A i = F c J R mulGrp R i J c J i mulGrp R A J i
102 101 mpteq2dva φ c h 0 I | finSupp 0 h h Y = 0 E Y F c R mulGrp R i I c i mulGrp R A i = c h 0 I | finSupp 0 h h Y = 0 F c J R mulGrp R i J c J i mulGrp R A J i
103 102 oveq2d φ R c h 0 I | finSupp 0 h h Y = 0 E Y F c R mulGrp R i I c i mulGrp R A i = R c h 0 I | finSupp 0 h h Y = 0 F c J R mulGrp R i J c J i mulGrp R A J i
104 7 crngringd φ R Ring
105 104 ringcmnd φ R CMnd
106 ovex 0 I V
107 106 rabex h 0 I | finSupp 0 h V
108 107 a1i φ h 0 I | finSupp 0 h V
109 14 a1i Could not format ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) ) : No typesetting found for |- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( E ` Y ) ` F ) ` c ) = ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) ) with typecode |-
110 8 adantr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 I V
111 7 adantr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 R CRing
112 9 adantr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 Y I
113 10 adantr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 F M
114 difssd φ h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 h 0 I | finSupp 0 h
115 114 sselda φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c h 0 I | finSupp 0 h
116 16 17 110 111 112 3 4 113 115 extvfvv Could not format ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) = if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) ) : No typesetting found for |- ( ( ph /\ c e. ( { h e. ( NN0 ^m I ) | h finSupp 0 } \ { h e. ( NN0 ^m I ) | ( h finSupp 0 /\ ( h ` Y ) = 0 ) } ) ) -> ( ( ( ( I extendVars R ) ` Y ) ` F ) ` c ) = if ( ( c ` Y ) = 0 , ( F ` ( c |` J ) ) , ( 0g ` R ) ) ) with typecode |-
117 115 adantr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 c h 0 I | finSupp 0 h
118 73 117 sselid φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 c 0 I
119 22 117 elrabrd φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 finSupp 0 c
120 simpr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 c Y = 0
121 119 120 jca φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 finSupp 0 c c Y = 0
122 28 118 121 elrabd φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 c h 0 I | finSupp 0 h h Y = 0
123 simplr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0
124 123 eldifbd φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 c Y = 0 ¬ c h 0 I | finSupp 0 h h Y = 0
125 122 124 pm2.65da φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 ¬ c Y = 0
126 125 iffalsed φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 if c Y = 0 F c J 0 R = 0 R
127 109 116 126 3eqtrd φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 E Y F c = 0 R
128 127 oveq1d φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 E Y F c R mulGrp R i I c i mulGrp R A i = 0 R R mulGrp R i I c i mulGrp R A i
129 eqid R = R
130 104 adantr φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 R Ring
131 88 fmpttd φ c h 0 I | finSupp 0 h i I c i mulGrp R A i : I B
132 38 40 84 67 131 81 gsumcl φ c h 0 I | finSupp 0 h mulGrp R i I c i mulGrp R A i B
133 115 132 syldan φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 mulGrp R i I c i mulGrp R A i B
134 5 129 17 130 133 ringlzd φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 0 R R mulGrp R i I c i mulGrp R A i = 0 R
135 128 134 eqtrd φ c h 0 I | finSupp 0 h h 0 I | finSupp 0 h h Y = 0 E Y F c R mulGrp R i I c i mulGrp R A i = 0 R
136 eqid I mPoly R = I mPoly R
137 eqid Base I mPoly R = Base I mPoly R
138 16 psrbasfsupp h 0 I | finSupp 0 h = h 0 I | h -1 Fin
139 16 17 8 104 5 3 4 9 10 137 extvfvcl Could not format ( ph -> ( ( ( I extendVars R ) ` Y ) ` F ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( ( I extendVars R ) ` Y ) ` F ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
140 13 139 eqeltrid φ E Y F Base I mPoly R
141 136 5 137 138 140 mplelf φ E Y F : h 0 I | finSupp 0 h B
142 136 137 17 140 mplelsfi φ finSupp 0 R E Y F
143 5 104 108 132 141 142 rmfsupp2 φ finSupp 0 R c h 0 I | finSupp 0 h E Y F c R mulGrp R i I c i mulGrp R A i
144 104 adantr φ c h 0 I | finSupp 0 h R Ring
145 141 ffvelcdmda φ c h 0 I | finSupp 0 h E Y F c B
146 5 129 144 145 132 ringcld φ c h 0 I | finSupp 0 h E Y F c R mulGrp R i I c i mulGrp R A i B
147 simpl finSupp 0 h h Y = 0 finSupp 0 h
148 147 a1i φ h 0 I finSupp 0 h h Y = 0 finSupp 0 h
149 148 ss2rabdv φ h 0 I | finSupp 0 h h Y = 0 h 0 I | finSupp 0 h
150 5 17 105 108 135 143 146 149 gsummptfsres φ R c h 0 I | finSupp 0 h E Y F c R mulGrp R i I c i mulGrp R A i = R c h 0 I | finSupp 0 h h Y = 0 E Y F c R mulGrp R i I c i mulGrp R A i
151 nfcv _ b F c J R mulGrp R i J c J i mulGrp R A J i
152 fveq2 b = c J F b = F c J
153 fveq1 b = c J b i = c J i
154 153 oveq1d b = c J b i mulGrp R A J i = c J i mulGrp R A J i
155 154 mpteq2dv b = c J i J b i mulGrp R A J i = i J c J i mulGrp R A J i
156 155 oveq2d b = c J mulGrp R i J b i mulGrp R A J i = mulGrp R i J c J i mulGrp R A J i
157 152 156 oveq12d b = c J F b R mulGrp R i J b i mulGrp R A J i = F c J R mulGrp R i J c J i mulGrp R A J i
158 ovex 0 J V
159 158 rabex h 0 J | finSupp 0 h V
160 159 a1i φ h 0 J | finSupp 0 h V
161 eqid J mPoly R = J mPoly R
162 eqid h 0 J | finSupp 0 h = h 0 J | finSupp 0 h
163 162 psrbasfsupp h 0 J | finSupp 0 h = h 0 J | h -1 Fin
164 161 5 4 163 10 mplelf φ F : h 0 J | finSupp 0 h B
165 164 feqmptd φ F = b h 0 J | finSupp 0 h F b
166 161 4 17 10 mplelsfi φ finSupp 0 R F
167 165 166 eqbrtrrd φ finSupp 0 R b h 0 J | finSupp 0 h F b
168 104 adantr φ x B R Ring
169 simpr φ x B x B
170 5 129 17 168 169 ringlzd φ x B 0 R R x = 0 R
171 164 ffvelcdmda φ b h 0 J | finSupp 0 h F b B
172 83 adantr φ b h 0 J | finSupp 0 h mulGrp R CMnd
173 91 a1i φ J I
174 8 173 ssexd φ J V
175 174 adantr φ b h 0 J | finSupp 0 h J V
176 172 cmnmndd φ b h 0 J | finSupp 0 h mulGrp R Mnd
177 176 adantr φ b h 0 J | finSupp 0 h i J mulGrp R Mnd
178 71 a1i φ b h 0 J | finSupp 0 h 0 V
179 ssrab2 h 0 J | finSupp 0 h 0 J
180 179 a1i φ h 0 J | finSupp 0 h 0 J
181 180 sselda φ b h 0 J | finSupp 0 h b 0 J
182 175 178 181 elmaprd φ b h 0 J | finSupp 0 h b : J 0
183 182 ffvelcdmda φ b h 0 J | finSupp 0 h i J b i 0
184 11 adantr φ b h 0 J | finSupp 0 h A : I B
185 91 a1i φ b h 0 J | finSupp 0 h J I
186 184 185 fssresd φ b h 0 J | finSupp 0 h A J : J B
187 186 ffvelcdmda φ b h 0 J | finSupp 0 h i J A J i B
188 38 60 177 183 187 mulgnn0cld φ b h 0 J | finSupp 0 h i J b i mulGrp R A J i B
189 188 fmpttd φ b h 0 J | finSupp 0 h i J b i mulGrp R A J i : J B
190 182 feqmptd φ b h 0 J | finSupp 0 h b = i J b i
191 breq1 h = b finSupp 0 h finSupp 0 b
192 simpr φ b h 0 J | finSupp 0 h b h 0 J | finSupp 0 h
193 191 192 elrabrd φ b h 0 J | finSupp 0 h finSupp 0 b
194 190 193 eqbrtrrd φ b h 0 J | finSupp 0 h finSupp 0 i J b i
195 79 adantl φ b h 0 J | finSupp 0 h x B 0 mulGrp R x = 1 R
196 fvexd φ b h 0 J | finSupp 0 h 1 R V
197 194 195 183 187 196 fsuppssov1 φ b h 0 J | finSupp 0 h finSupp 1 R i J b i mulGrp R A J i
198 38 40 172 175 189 197 gsumcl φ b h 0 J | finSupp 0 h mulGrp R i J b i mulGrp R A J i B
199 fvexd φ 0 R V
200 167 170 171 198 199 fsuppssov1 φ finSupp 0 R b h 0 J | finSupp 0 h F b R mulGrp R i J b i mulGrp R A J i
201 ssidd φ B B
202 104 adantr φ b h 0 J | finSupp 0 h R Ring
203 5 129 202 171 198 ringcld φ b h 0 J | finSupp 0 h F b R mulGrp R i J b i mulGrp R A J i B
204 breq1 h = c J finSupp 0 h finSupp 0 c J
205 25 92 elmapssresd φ c h 0 I | finSupp 0 h h Y = 0 c J 0 J
206 65 a1i φ c h 0 I | finSupp 0 h h Y = 0 0 0
207 31 206 fsuppres φ c h 0 I | finSupp 0 h h Y = 0 finSupp 0 c J
208 204 205 207 elrabd φ c h 0 I | finSupp 0 h h Y = 0 c J h 0 J | finSupp 0 h
209 breq1 h = b Y 0 finSupp 0 h finSupp 0 b Y 0
210 fveq1 h = b Y 0 h Y = b Y 0 Y
211 210 eqeq1d h = b Y 0 h Y = 0 b Y 0 Y = 0
212 209 211 anbi12d h = b Y 0 finSupp 0 h h Y = 0 finSupp 0 b Y 0 b Y 0 Y = 0
213 8 adantr φ b h 0 J | finSupp 0 h I V
214 3 uneq1i J Y = I Y Y
215 undifr Y I I Y Y = I
216 45 215 sylib φ I Y Y = I
217 214 216 eqtrid φ J Y = I
218 217 adantr φ b h 0 J | finSupp 0 h J Y = I
219 65 a1i φ 0 0
220 9 219 fsnd φ Y 0 : Y 0
221 220 adantr φ b h 0 J | finSupp 0 h Y 0 : Y 0
222 3 ineq1i J Y = I Y Y
223 disjdifr I Y Y =
224 222 223 eqtri J Y =
225 224 a1i φ b h 0 J | finSupp 0 h J Y =
226 182 221 225 fun2d φ b h 0 J | finSupp 0 h b Y 0 : J Y 0
227 218 226 feq2dd φ b h 0 J | finSupp 0 h b Y 0 : I 0
228 178 213 227 elmapdd φ b h 0 J | finSupp 0 h b Y 0 0 I
229 9 65 jctir φ Y I 0 0
230 229 adantr φ b h 0 J | finSupp 0 h Y I 0 0
231 182 ffund φ b h 0 J | finSupp 0 h Fun b
232 neldifsnd φ ¬ Y I Y
233 3 eleq2i Y J Y I Y
234 232 233 sylnibr φ ¬ Y J
235 234 adantr φ b h 0 J | finSupp 0 h ¬ Y J
236 182 fdmd φ b h 0 J | finSupp 0 h dom b = J
237 235 236 neleqtrrd φ b h 0 J | finSupp 0 h ¬ Y dom b
238 df-nel Y dom b ¬ Y dom b
239 237 238 sylibr φ b h 0 J | finSupp 0 h Y dom b
240 231 239 jca φ b h 0 J | finSupp 0 h Fun b Y dom b
241 funsnfsupp Y I 0 0 Fun b Y dom b finSupp 0 b Y 0 finSupp 0 b
242 241 biimpar Y I 0 0 Fun b Y dom b finSupp 0 b finSupp 0 b Y 0
243 230 240 193 242 syl21anc φ b h 0 J | finSupp 0 h finSupp 0 b Y 0
244 9 adantr φ b h 0 J | finSupp 0 h Y I
245 65 a1i φ b h 0 J | finSupp 0 h 0 0
246 fsnunfv Y I 0 0 ¬ Y dom b b Y 0 Y = 0
247 244 245 237 246 syl3anc φ b h 0 J | finSupp 0 h b Y 0 Y = 0
248 243 247 jca φ b h 0 J | finSupp 0 h finSupp 0 b Y 0 b Y 0 Y = 0
249 212 228 248 elrabd φ b h 0 J | finSupp 0 h b Y 0 h 0 I | finSupp 0 h h Y = 0
250 simpr φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J b = c J
251 250 uneq1d φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J b Y 0 = c J Y 0
252 3 reseq2i c J = c I Y
253 252 uneq1i c J Y 0 = c I Y Y 0
254 253 a1i φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J c J Y 0 = c I Y Y 0
255 71 a1i φ c h 0 I | finSupp 0 h h Y = 0 0 V
256 18 255 25 elmaprd φ c h 0 I | finSupp 0 h h Y = 0 c : I 0
257 256 ad4ant13 φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J c : I 0
258 257 ffnd φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J c Fn I
259 244 ad2antrr φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J Y I
260 30 ad4ant13 φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J finSupp 0 c c Y = 0
261 260 simprd φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J c Y = 0
262 fresunsn c Fn I Y I c Y = 0 c I Y Y 0 = c
263 258 259 261 262 syl3anc φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J c I Y Y 0 = c
264 251 254 263 3eqtrrd φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J c = b Y 0
265 simpr φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 c = b Y 0 c = b Y 0
266 265 reseq1d φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 c = b Y 0 c J = b Y 0 J
267 182 ad2antrr φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 c = b Y 0 b : J 0
268 267 ffnd φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 c = b Y 0 b Fn J
269 235 ad2antrr φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 c = b Y 0 ¬ Y J
270 fsnunres b Fn J ¬ Y J b Y 0 J = b
271 268 269 270 syl2anc φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 c = b Y 0 b Y 0 J = b
272 266 271 eqtr2d φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 c = b Y 0 b = c J
273 264 272 impbida φ b h 0 J | finSupp 0 h c h 0 I | finSupp 0 h h Y = 0 b = c J c = b Y 0
274 249 273 reu6dv φ b h 0 J | finSupp 0 h ∃! c h 0 I | finSupp 0 h h Y = 0 b = c J
275 151 5 17 157 105 160 200 201 203 208 274 gsummptfsf1o φ R b h 0 J | finSupp 0 h F b R mulGrp R i J b i mulGrp R A J i = R c h 0 I | finSupp 0 h h Y = 0 F c J R mulGrp R i J c J i mulGrp R A J i
276 103 150 275 3eqtr4d φ R c h 0 I | finSupp 0 h E Y F c R mulGrp R i I c i mulGrp R A i = R b h 0 J | finSupp 0 h F b R mulGrp R i J b i mulGrp R A J i
277 1 5 evlval Q = I evalSub R B
278 eqid I mPoly R 𝑠 B = I mPoly R 𝑠 B
279 eqid Base I mPoly R 𝑠 B = Base I mPoly R 𝑠 B
280 eqid R 𝑠 B = R 𝑠 B
281 5 subrgid R Ring B SubRing R
282 104 281 syl φ B SubRing R
283 5 ressid R CRing R 𝑠 B = R
284 7 283 syl φ R 𝑠 B = R
285 284 oveq2d φ I mPoly R 𝑠 B = I mPoly R
286 285 fveq2d φ Base I mPoly R 𝑠 B = Base I mPoly R
287 140 286 eleqtrrd φ E Y F Base I mPoly R 𝑠 B
288 5 fvexi B V
289 288 a1i φ B V
290 289 8 11 elmapdd φ A B I
291 277 278 279 280 138 5 37 60 129 8 7 282 287 290 evlsvvval φ Q E Y F A = R c h 0 I | finSupp 0 h E Y F c R mulGrp R i I c i mulGrp R A i
292 2 5 evlval O = J evalSub R B
293 eqid J mPoly R 𝑠 B = J mPoly R 𝑠 B
294 eqid Base J mPoly R 𝑠 B = Base J mPoly R 𝑠 B
295 10 4 eleqtrdi φ F Base J mPoly R
296 284 oveq2d φ J mPoly R 𝑠 B = J mPoly R
297 296 fveq2d φ Base J mPoly R 𝑠 B = Base J mPoly R
298 295 297 eleqtrrd φ F Base J mPoly R 𝑠 B
299 290 173 elmapssresd φ A J B J
300 292 293 294 280 163 5 37 60 129 174 7 282 298 299 evlsvvval φ O F A J = R b h 0 J | finSupp 0 h F b R mulGrp R i J b i mulGrp R A J i
301 276 291 300 3eqtr4d φ Q E Y F A = O F A J