Metamath Proof Explorer


Theorem fresunsn

Description: Recover the original function from a point-added function. See also funresdfunsn and fsnunres . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Assertion fresunsn F Fn A X A F X = Y F A X X Y = F

Proof

Step Hyp Ref Expression
1 fnrel F Fn A Rel F
2 1 3ad2ant1 F Fn A X A F X = Y Rel F
3 resdmdfsn Rel F F V X = F dom F X
4 2 3 syl F Fn A X A F X = Y F V X = F dom F X
5 fndm F Fn A dom F = A
6 5 3ad2ant1 F Fn A X A F X = Y dom F = A
7 6 difeq1d F Fn A X A F X = Y dom F X = A X
8 7 reseq2d F Fn A X A F X = Y F dom F X = F A X
9 4 8 eqtr2d F Fn A X A F X = Y F A X = F V X
10 simp3 F Fn A X A F X = Y F X = Y
11 10 eqcomd F Fn A X A F X = Y Y = F X
12 11 opeq2d F Fn A X A F X = Y X Y = X F X
13 12 sneqd F Fn A X A F X = Y X Y = X F X
14 9 13 uneq12d F Fn A X A F X = Y F A X X Y = F V X X F X
15 fnfun F Fn A Fun F
16 15 3ad2ant1 F Fn A X A F X = Y Fun F
17 5 eleq2d F Fn A X dom F X A
18 17 biimpar F Fn A X A X dom F
19 18 3adant3 F Fn A X A F X = Y X dom F
20 funresdfunsn Fun F X dom F F V X X F X = F
21 16 19 20 syl2anc F Fn A X A F X = Y F V X X F X = F
22 14 21 eqtrd F Fn A X A F X = Y F A X X Y = F