| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> Rel F ) |
| 3 |
|
resdmdfsn |
|- ( Rel F -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
| 5 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> dom F = A ) |
| 7 |
6
|
difeq1d |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( dom F \ { X } ) = ( A \ { X } ) ) |
| 8 |
7
|
reseq2d |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( F |` ( dom F \ { X } ) ) = ( F |` ( A \ { X } ) ) ) |
| 9 |
4 8
|
eqtr2d |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( F |` ( A \ { X } ) ) = ( F |` ( _V \ { X } ) ) ) |
| 10 |
|
simp3 |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( F ` X ) = Y ) |
| 11 |
10
|
eqcomd |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> Y = ( F ` X ) ) |
| 12 |
11
|
opeq2d |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> <. X , Y >. = <. X , ( F ` X ) >. ) |
| 13 |
12
|
sneqd |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> { <. X , Y >. } = { <. X , ( F ` X ) >. } ) |
| 14 |
9 13
|
uneq12d |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( ( F |` ( A \ { X } ) ) u. { <. X , Y >. } ) = ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 15 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> Fun F ) |
| 17 |
5
|
eleq2d |
|- ( F Fn A -> ( X e. dom F <-> X e. A ) ) |
| 18 |
17
|
biimpar |
|- ( ( F Fn A /\ X e. A ) -> X e. dom F ) |
| 19 |
18
|
3adant3 |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> X e. dom F ) |
| 20 |
|
funresdfunsn |
|- ( ( Fun F /\ X e. dom F ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) = F ) |
| 21 |
16 19 20
|
syl2anc |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) = F ) |
| 22 |
14 21
|
eqtrd |
|- ( ( F Fn A /\ X e. A /\ ( F ` X ) = Y ) -> ( ( F |` ( A \ { X } ) ) u. { <. X , Y >. } ) = F ) |