| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1o3d.1 |
|- ( ph -> F = ( x e. A |-> C ) ) |
| 2 |
|
f1o3d.2 |
|- ( ( ph /\ x e. A ) -> C e. B ) |
| 3 |
|
f1o3d.3 |
|- ( ( ph /\ y e. B ) -> D e. A ) |
| 4 |
|
f1o3d.4 |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x = D <-> y = C ) ) |
| 5 |
2
|
ralrimiva |
|- ( ph -> A. x e. A C e. B ) |
| 6 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
| 7 |
6
|
fnmpt |
|- ( A. x e. A C e. B -> ( x e. A |-> C ) Fn A ) |
| 8 |
5 7
|
syl |
|- ( ph -> ( x e. A |-> C ) Fn A ) |
| 9 |
1
|
fneq1d |
|- ( ph -> ( F Fn A <-> ( x e. A |-> C ) Fn A ) ) |
| 10 |
8 9
|
mpbird |
|- ( ph -> F Fn A ) |
| 11 |
3
|
ralrimiva |
|- ( ph -> A. y e. B D e. A ) |
| 12 |
|
eqid |
|- ( y e. B |-> D ) = ( y e. B |-> D ) |
| 13 |
12
|
fnmpt |
|- ( A. y e. B D e. A -> ( y e. B |-> D ) Fn B ) |
| 14 |
11 13
|
syl |
|- ( ph -> ( y e. B |-> D ) Fn B ) |
| 15 |
|
eleq1a |
|- ( C e. B -> ( y = C -> y e. B ) ) |
| 16 |
2 15
|
syl |
|- ( ( ph /\ x e. A ) -> ( y = C -> y e. B ) ) |
| 17 |
16
|
impr |
|- ( ( ph /\ ( x e. A /\ y = C ) ) -> y e. B ) |
| 18 |
4
|
biimpar |
|- ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ y = C ) -> x = D ) |
| 19 |
18
|
exp42 |
|- ( ph -> ( x e. A -> ( y e. B -> ( y = C -> x = D ) ) ) ) |
| 20 |
19
|
com34 |
|- ( ph -> ( x e. A -> ( y = C -> ( y e. B -> x = D ) ) ) ) |
| 21 |
20
|
imp32 |
|- ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B -> x = D ) ) |
| 22 |
17 21
|
jcai |
|- ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B /\ x = D ) ) |
| 23 |
|
eleq1a |
|- ( D e. A -> ( x = D -> x e. A ) ) |
| 24 |
3 23
|
syl |
|- ( ( ph /\ y e. B ) -> ( x = D -> x e. A ) ) |
| 25 |
24
|
impr |
|- ( ( ph /\ ( y e. B /\ x = D ) ) -> x e. A ) |
| 26 |
4
|
biimpa |
|- ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ x = D ) -> y = C ) |
| 27 |
26
|
exp42 |
|- ( ph -> ( x e. A -> ( y e. B -> ( x = D -> y = C ) ) ) ) |
| 28 |
27
|
com23 |
|- ( ph -> ( y e. B -> ( x e. A -> ( x = D -> y = C ) ) ) ) |
| 29 |
28
|
com34 |
|- ( ph -> ( y e. B -> ( x = D -> ( x e. A -> y = C ) ) ) ) |
| 30 |
29
|
imp32 |
|- ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A -> y = C ) ) |
| 31 |
25 30
|
jcai |
|- ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A /\ y = C ) ) |
| 32 |
22 31
|
impbida |
|- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
| 33 |
32
|
opabbidv |
|- ( ph -> { <. y , x >. | ( x e. A /\ y = C ) } = { <. y , x >. | ( y e. B /\ x = D ) } ) |
| 34 |
|
df-mpt |
|- ( x e. A |-> C ) = { <. x , y >. | ( x e. A /\ y = C ) } |
| 35 |
1 34
|
eqtrdi |
|- ( ph -> F = { <. x , y >. | ( x e. A /\ y = C ) } ) |
| 36 |
35
|
cnveqd |
|- ( ph -> `' F = `' { <. x , y >. | ( x e. A /\ y = C ) } ) |
| 37 |
|
cnvopab |
|- `' { <. x , y >. | ( x e. A /\ y = C ) } = { <. y , x >. | ( x e. A /\ y = C ) } |
| 38 |
36 37
|
eqtrdi |
|- ( ph -> `' F = { <. y , x >. | ( x e. A /\ y = C ) } ) |
| 39 |
|
df-mpt |
|- ( y e. B |-> D ) = { <. y , x >. | ( y e. B /\ x = D ) } |
| 40 |
39
|
a1i |
|- ( ph -> ( y e. B |-> D ) = { <. y , x >. | ( y e. B /\ x = D ) } ) |
| 41 |
33 38 40
|
3eqtr4d |
|- ( ph -> `' F = ( y e. B |-> D ) ) |
| 42 |
41
|
fneq1d |
|- ( ph -> ( `' F Fn B <-> ( y e. B |-> D ) Fn B ) ) |
| 43 |
14 42
|
mpbird |
|- ( ph -> `' F Fn B ) |
| 44 |
|
dff1o4 |
|- ( F : A -1-1-onto-> B <-> ( F Fn A /\ `' F Fn B ) ) |
| 45 |
10 43 44
|
sylanbrc |
|- ( ph -> F : A -1-1-onto-> B ) |
| 46 |
45 41
|
jca |
|- ( ph -> ( F : A -1-1-onto-> B /\ `' F = ( y e. B |-> D ) ) ) |