| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1o3d.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 2 |
|
f1o3d.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 3 |
|
f1o3d.3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝐴 ) |
| 4 |
|
f1o3d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) |
| 5 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 7 |
6
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 9 |
1
|
fneq1d |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ) |
| 10 |
8 9
|
mpbird |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 11 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝐴 ) |
| 12 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) |
| 13 |
12
|
fnmpt |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 14 |
11 13
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 15 |
|
eleq1a |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝑦 = 𝐶 → 𝑦 ∈ 𝐵 ) ) |
| 16 |
2 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐶 → 𝑦 ∈ 𝐵 ) ) |
| 17 |
16
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → 𝑦 ∈ 𝐵 ) |
| 18 |
4
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝐷 ) |
| 19 |
18
|
exp42 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑦 = 𝐶 → 𝑥 = 𝐷 ) ) ) ) |
| 20 |
19
|
com34 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐷 ) ) ) ) |
| 21 |
20
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐷 ) ) |
| 22 |
17 21
|
jcai |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) |
| 23 |
|
eleq1a |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 = 𝐷 → 𝑥 ∈ 𝐴 ) ) |
| 24 |
3 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 → 𝑥 ∈ 𝐴 ) ) |
| 25 |
24
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → 𝑥 ∈ 𝐴 ) |
| 26 |
4
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑥 = 𝐷 ) → 𝑦 = 𝐶 ) |
| 27 |
26
|
exp42 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐷 → 𝑦 = 𝐶 ) ) ) ) |
| 28 |
27
|
com23 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝐷 → 𝑦 = 𝐶 ) ) ) ) |
| 29 |
28
|
com34 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐷 → ( 𝑥 ∈ 𝐴 → 𝑦 = 𝐶 ) ) ) ) |
| 30 |
29
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → ( 𝑥 ∈ 𝐴 → 𝑦 = 𝐶 ) ) |
| 31 |
25 30
|
jcai |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
| 32 |
22 31
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) ) |
| 33 |
32
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) } ) |
| 34 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 35 |
1 34
|
eqtrdi |
⊢ ( 𝜑 → 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ) |
| 36 |
35
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝐹 = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ) |
| 37 |
|
cnvopab |
⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 38 |
36 37
|
eqtrdi |
⊢ ( 𝜑 → ◡ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ) |
| 39 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) } |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) } ) |
| 41 |
33 38 40
|
3eqtr4d |
⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) |
| 42 |
41
|
fneq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 Fn 𝐵 ↔ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) ) |
| 43 |
14 42
|
mpbird |
⊢ ( 𝜑 → ◡ 𝐹 Fn 𝐵 ) |
| 44 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ◡ 𝐹 Fn 𝐵 ) ) |
| 45 |
10 43 44
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 46 |
45 41
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) ) |