Metamath Proof Explorer


Theorem f1o3d

Description: Describe an implicit one-to-one onto function. (Contributed by Thierry Arnoux, 23-Apr-2017)

Ref Expression
Hypotheses f1o3d.1 φF=xAC
f1o3d.2 φxACB
f1o3d.3 φyBDA
f1o3d.4 φxAyBx=Dy=C
Assertion f1o3d φF:A1-1 ontoBF-1=yBD

Proof

Step Hyp Ref Expression
1 f1o3d.1 φF=xAC
2 f1o3d.2 φxACB
3 f1o3d.3 φyBDA
4 f1o3d.4 φxAyBx=Dy=C
5 2 ralrimiva φxACB
6 eqid xAC=xAC
7 6 fnmpt xACBxACFnA
8 5 7 syl φxACFnA
9 1 fneq1d φFFnAxACFnA
10 8 9 mpbird φFFnA
11 3 ralrimiva φyBDA
12 eqid yBD=yBD
13 12 fnmpt yBDAyBDFnB
14 11 13 syl φyBDFnB
15 eleq1a CBy=CyB
16 2 15 syl φxAy=CyB
17 16 impr φxAy=CyB
18 4 biimpar φxAyBy=Cx=D
19 18 exp42 φxAyBy=Cx=D
20 19 com34 φxAy=CyBx=D
21 20 imp32 φxAy=CyBx=D
22 17 21 jcai φxAy=CyBx=D
23 eleq1a DAx=DxA
24 3 23 syl φyBx=DxA
25 24 impr φyBx=DxA
26 4 biimpa φxAyBx=Dy=C
27 26 exp42 φxAyBx=Dy=C
28 27 com23 φyBxAx=Dy=C
29 28 com34 φyBx=DxAy=C
30 29 imp32 φyBx=DxAy=C
31 25 30 jcai φyBx=DxAy=C
32 22 31 impbida φxAy=CyBx=D
33 32 opabbidv φyx|xAy=C=yx|yBx=D
34 df-mpt xAC=xy|xAy=C
35 1 34 eqtrdi φF=xy|xAy=C
36 35 cnveqd φF-1=xy|xAy=C-1
37 cnvopab xy|xAy=C-1=yx|xAy=C
38 36 37 eqtrdi φF-1=yx|xAy=C
39 df-mpt yBD=yx|yBx=D
40 39 a1i φyBD=yx|yBx=D
41 33 38 40 3eqtr4d φF-1=yBD
42 41 fneq1d φF-1FnByBDFnB
43 14 42 mpbird φF-1FnB
44 dff1o4 F:A1-1 ontoBFFnAF-1FnB
45 10 43 44 sylanbrc φF:A1-1 ontoB
46 45 41 jca φF:A1-1 ontoBF-1=yBD