| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlextv.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
| 2 |
|
evlextv.o |
⊢ 𝑂 = ( 𝐽 eval 𝑅 ) |
| 3 |
|
evlextv.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝑌 } ) |
| 4 |
|
evlextv.m |
⊢ 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 5 |
|
evlextv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
evlextv.e |
⊢ 𝐸 = ( 𝐼 extendVars 𝑅 ) |
| 7 |
|
evlextv.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 8 |
|
evlextv.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 9 |
|
evlextv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
| 10 |
|
evlextv.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑀 ) |
| 11 |
|
evlextv.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 12 |
6
|
fveq1i |
⊢ ( 𝐸 ‘ 𝑌 ) = ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) |
| 13 |
12
|
fveq1i |
⊢ ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ 𝐹 ) |
| 14 |
13
|
fveq1i |
⊢ ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) = ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) = ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ) |
| 16 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝐼 ∈ 𝑉 ) |
| 19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝑅 ∈ CRing ) |
| 20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝑌 ∈ 𝐼 ) |
| 21 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝐹 ∈ 𝑀 ) |
| 22 |
|
breq1 |
⊢ ( ℎ = 𝑐 → ( ℎ finSupp 0 ↔ 𝑐 finSupp 0 ) ) |
| 23 |
|
ssrab2 |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ⊆ ( ℕ0 ↑m 𝐼 ) |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 25 |
24
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 26 |
|
fveq1 |
⊢ ( ℎ = 𝑐 → ( ℎ ‘ 𝑌 ) = ( 𝑐 ‘ 𝑌 ) ) |
| 27 |
26
|
eqeq1d |
⊢ ( ℎ = 𝑐 → ( ( ℎ ‘ 𝑌 ) = 0 ↔ ( 𝑐 ‘ 𝑌 ) = 0 ) ) |
| 28 |
22 27
|
anbi12d |
⊢ ( ℎ = 𝑐 → ( ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) ↔ ( 𝑐 finSupp 0 ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) |
| 30 |
28 29
|
elrabrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑐 finSupp 0 ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) ) |
| 31 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝑐 finSupp 0 ) |
| 32 |
22 25 31
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 33 |
16 17 18 19 20 3 4 21 32
|
extvfvv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) = if ( ( 𝑐 ‘ 𝑌 ) = 0 , ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) ) |
| 34 |
30
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑐 ‘ 𝑌 ) = 0 ) |
| 35 |
34
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → if ( ( 𝑐 ‘ 𝑌 ) = 0 , ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) = ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ) |
| 36 |
15 33 35
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) = ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ) |
| 37 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 38 |
37 5
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 39 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 40 |
37 39
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 41 |
37
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 42 |
19 41
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) |
| 44 |
3
|
difeq2i |
⊢ ( 𝐼 ∖ 𝐽 ) = ( 𝐼 ∖ ( 𝐼 ∖ { 𝑌 } ) ) |
| 45 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐼 ) |
| 46 |
|
dfss4 |
⊢ ( { 𝑌 } ⊆ 𝐼 ↔ ( 𝐼 ∖ ( 𝐼 ∖ { 𝑌 } ) ) = { 𝑌 } ) |
| 47 |
45 46
|
sylib |
⊢ ( 𝜑 → ( 𝐼 ∖ ( 𝐼 ∖ { 𝑌 } ) ) = { 𝑌 } ) |
| 48 |
44 47
|
eqtrid |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) = { 𝑌 } ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝐼 ∖ 𝐽 ) = { 𝑌 } ) |
| 50 |
43 49
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑖 ∈ { 𝑌 } ) |
| 51 |
50
|
elsnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑖 = 𝑌 ) |
| 52 |
51
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑌 ) ) |
| 53 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝑐 ‘ 𝑌 ) = 0 ) |
| 54 |
52 53
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝑐 ‘ 𝑖 ) = 0 ) |
| 55 |
54
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) |
| 56 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 57 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) |
| 58 |
57
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑖 ∈ 𝐼 ) |
| 59 |
56 58
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝐵 ) |
| 60 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 61 |
38 40 60
|
mulg0 |
⊢ ( ( 𝐴 ‘ 𝑖 ) ∈ 𝐵 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( 1r ‘ 𝑅 ) ) |
| 62 |
59 61
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( 1r ‘ 𝑅 ) ) |
| 63 |
55 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( 1r ‘ 𝑅 ) ) |
| 64 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 1r ‘ 𝑅 ) ∈ V ) |
| 65 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℕ0 ) |
| 67 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 68 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ⊆ 𝐼 ) |
| 69 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 70 |
69
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝐵 ) |
| 71 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 72 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 73 |
|
ssrab2 |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 75 |
74
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 76 |
67 72 75
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑐 : 𝐼 ⟶ ℕ0 ) |
| 77 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 78 |
22 77
|
elrabrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑐 finSupp 0 ) |
| 79 |
38 40 60
|
mulg0 |
⊢ ( 𝑥 ∈ 𝐵 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 80 |
79
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 81 |
64 66 67 68 70 76 78 80
|
fisuppov1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) finSupp ( 1r ‘ 𝑅 ) ) |
| 82 |
32 81
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) finSupp ( 1r ‘ 𝑅 ) ) |
| 83 |
7 41
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 85 |
84
|
cmnmndd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 86 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 87 |
76
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑖 ) ∈ ℕ0 ) |
| 88 |
38 60 86 87 70
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ∈ 𝐵 ) |
| 89 |
32 88
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ∈ 𝐵 ) |
| 90 |
|
difss |
⊢ ( 𝐼 ∖ { 𝑌 } ) ⊆ 𝐼 |
| 91 |
3 90
|
eqsstri |
⊢ 𝐽 ⊆ 𝐼 |
| 92 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝐽 ⊆ 𝐼 ) |
| 93 |
38 40 42 18 63 82 89 92
|
gsummptfsres |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 94 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ 𝐽 ) → 𝑖 ∈ 𝐽 ) |
| 95 |
94
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ 𝐽 ) → ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) = ( 𝑐 ‘ 𝑖 ) ) |
| 96 |
94
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 97 |
95 96
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑖 ∈ 𝐽 ) → ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) = ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) |
| 98 |
97
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 99 |
98
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 100 |
93 99
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) |
| 101 |
36 100
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) |
| 102 |
101
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ↦ ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ↦ ( ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 103 |
102
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ↦ ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ↦ ( ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 104 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 105 |
104
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 106 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 107 |
106
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V |
| 108 |
107
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 109 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) = ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ) |
| 110 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → 𝐼 ∈ 𝑉 ) |
| 111 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → 𝑅 ∈ CRing ) |
| 112 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → 𝑌 ∈ 𝐼 ) |
| 113 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → 𝐹 ∈ 𝑀 ) |
| 114 |
|
difssd |
⊢ ( 𝜑 → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 115 |
114
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 116 |
16 17 110 111 112 3 4 113 115
|
extvfvv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) = if ( ( 𝑐 ‘ 𝑌 ) = 0 , ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) ) |
| 117 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 118 |
73 117
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → 𝑐 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 119 |
22 117
|
elrabrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → 𝑐 finSupp 0 ) |
| 120 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → ( 𝑐 ‘ 𝑌 ) = 0 ) |
| 121 |
119 120
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → ( 𝑐 finSupp 0 ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) ) |
| 122 |
28 118 121
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) |
| 123 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) |
| 124 |
123
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → ¬ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) |
| 125 |
122 124
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ¬ ( 𝑐 ‘ 𝑌 ) = 0 ) |
| 126 |
125
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → if ( ( 𝑐 ‘ 𝑌 ) = 0 , ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 127 |
109 116 126
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 128 |
127
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 129 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 130 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → 𝑅 ∈ Ring ) |
| 131 |
88
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 132 |
38 40 84 67 131 81
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐵 ) |
| 133 |
115 132
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐵 ) |
| 134 |
5 129 17 130 133
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 135 |
128 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∖ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ) → ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 136 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 137 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 138 |
16
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 139 |
16 17 8 104 5 3 4 9 10 137
|
extvfvcl |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 140 |
13 139
|
eqeltrid |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 141 |
136 5 137 138 140
|
mplelf |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ 𝐵 ) |
| 142 |
136 137 17 140
|
mplelsfi |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) finSupp ( 0g ‘ 𝑅 ) ) |
| 143 |
5 104 108 132 141 142
|
rmfsupp2 |
⊢ ( 𝜑 → ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 144 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑅 ∈ Ring ) |
| 145 |
141
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ∈ 𝐵 ) |
| 146 |
5 129 144 145 132
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ∈ 𝐵 ) |
| 147 |
|
simpl |
⊢ ( ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) → ℎ finSupp 0 ) |
| 148 |
147
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ( ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) → ℎ finSupp 0 ) ) |
| 149 |
148
|
ss2rabdv |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 150 |
5 17 105 108 135 143 146 149
|
gsummptfsres |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ↦ ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 151 |
|
nfcv |
⊢ Ⅎ 𝑏 ( ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) |
| 152 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑐 ↾ 𝐽 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ) |
| 153 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑐 ↾ 𝐽 ) → ( 𝑏 ‘ 𝑖 ) = ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ) |
| 154 |
153
|
oveq1d |
⊢ ( 𝑏 = ( 𝑐 ↾ 𝐽 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) = ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) |
| 155 |
154
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑐 ↾ 𝐽 ) → ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) |
| 156 |
155
|
oveq2d |
⊢ ( 𝑏 = ( 𝑐 ↾ 𝐽 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) |
| 157 |
152 156
|
oveq12d |
⊢ ( 𝑏 = ( 𝑐 ↾ 𝐽 ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) |
| 158 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐽 ) ∈ V |
| 159 |
158
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ∈ V |
| 160 |
159
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 161 |
|
eqid |
⊢ ( 𝐽 mPoly 𝑅 ) = ( 𝐽 mPoly 𝑅 ) |
| 162 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } |
| 163 |
162
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 164 |
161 5 4 163 10
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ⟶ 𝐵 ) |
| 165 |
164
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑏 ) ) ) |
| 166 |
161 4 17 10
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
| 167 |
165 166
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑏 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 168 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 169 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 170 |
5 129 17 168 169
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 171 |
164
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐵 ) |
| 172 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 173 |
91
|
a1i |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 174 |
8 173
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝐽 ∈ V ) |
| 176 |
172
|
cmnmndd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 177 |
176
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐽 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 178 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 179 |
|
ssrab2 |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐽 ) |
| 180 |
179
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐽 ) ) |
| 181 |
180
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑏 ∈ ( ℕ0 ↑m 𝐽 ) ) |
| 182 |
175 178 181
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑏 : 𝐽 ⟶ ℕ0 ) |
| 183 |
182
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐽 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 184 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 185 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝐽 ⊆ 𝐼 ) |
| 186 |
184 185
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ 𝐵 ) |
| 187 |
186
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ∈ 𝐵 ) |
| 188 |
38 60 177 183 187
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑖 ∈ 𝐽 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ∈ 𝐵 ) |
| 189 |
188
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) : 𝐽 ⟶ 𝐵 ) |
| 190 |
182
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑏 = ( 𝑖 ∈ 𝐽 ↦ ( 𝑏 ‘ 𝑖 ) ) ) |
| 191 |
|
breq1 |
⊢ ( ℎ = 𝑏 → ( ℎ finSupp 0 ↔ 𝑏 finSupp 0 ) ) |
| 192 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) |
| 193 |
191 192
|
elrabrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑏 finSupp 0 ) |
| 194 |
190 193
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑖 ∈ 𝐽 ↦ ( 𝑏 ‘ 𝑖 ) ) finSupp 0 ) |
| 195 |
79
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 196 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 1r ‘ 𝑅 ) ∈ V ) |
| 197 |
194 195 183 187 196
|
fsuppssov1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) finSupp ( 1r ‘ 𝑅 ) ) |
| 198 |
38 40 172 175 189 197
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ∈ 𝐵 ) |
| 199 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
| 200 |
167 170 171 198 199
|
fsuppssov1 |
⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 201 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
| 202 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑅 ∈ Ring ) |
| 203 |
5 129 202 171 198
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ∈ 𝐵 ) |
| 204 |
|
breq1 |
⊢ ( ℎ = ( 𝑐 ↾ 𝐽 ) → ( ℎ finSupp 0 ↔ ( 𝑐 ↾ 𝐽 ) finSupp 0 ) ) |
| 205 |
25 92
|
elmapssresd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑐 ↾ 𝐽 ) ∈ ( ℕ0 ↑m 𝐽 ) ) |
| 206 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 0 ∈ ℕ0 ) |
| 207 |
31 206
|
fsuppres |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑐 ↾ 𝐽 ) finSupp 0 ) |
| 208 |
204 205 207
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑐 ↾ 𝐽 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) |
| 209 |
|
breq1 |
⊢ ( ℎ = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) → ( ℎ finSupp 0 ↔ ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) finSupp 0 ) ) |
| 210 |
|
fveq1 |
⊢ ( ℎ = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) → ( ℎ ‘ 𝑌 ) = ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ‘ 𝑌 ) ) |
| 211 |
210
|
eqeq1d |
⊢ ( ℎ = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) → ( ( ℎ ‘ 𝑌 ) = 0 ↔ ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ‘ 𝑌 ) = 0 ) ) |
| 212 |
209 211
|
anbi12d |
⊢ ( ℎ = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) → ( ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) ↔ ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) finSupp 0 ∧ ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ‘ 𝑌 ) = 0 ) ) ) |
| 213 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 214 |
3
|
uneq1i |
⊢ ( 𝐽 ∪ { 𝑌 } ) = ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) |
| 215 |
|
undifr |
⊢ ( { 𝑌 } ⊆ 𝐼 ↔ ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 ) |
| 216 |
45 215
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 ) |
| 217 |
214 216
|
eqtrid |
⊢ ( 𝜑 → ( 𝐽 ∪ { 𝑌 } ) = 𝐼 ) |
| 218 |
217
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝐽 ∪ { 𝑌 } ) = 𝐼 ) |
| 219 |
65
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 220 |
9 219
|
fsnd |
⊢ ( 𝜑 → { 〈 𝑌 , 0 〉 } : { 𝑌 } ⟶ ℕ0 ) |
| 221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → { 〈 𝑌 , 0 〉 } : { 𝑌 } ⟶ ℕ0 ) |
| 222 |
3
|
ineq1i |
⊢ ( 𝐽 ∩ { 𝑌 } ) = ( ( 𝐼 ∖ { 𝑌 } ) ∩ { 𝑌 } ) |
| 223 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ { 𝑌 } ) ∩ { 𝑌 } ) = ∅ |
| 224 |
222 223
|
eqtri |
⊢ ( 𝐽 ∩ { 𝑌 } ) = ∅ |
| 225 |
224
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝐽 ∩ { 𝑌 } ) = ∅ ) |
| 226 |
182 221 225
|
fun2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) : ( 𝐽 ∪ { 𝑌 } ) ⟶ ℕ0 ) |
| 227 |
218 226
|
feq2dd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) : 𝐼 ⟶ ℕ0 ) |
| 228 |
178 213 227
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 229 |
9 65
|
jctir |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐼 ∧ 0 ∈ ℕ0 ) ) |
| 230 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑌 ∈ 𝐼 ∧ 0 ∈ ℕ0 ) ) |
| 231 |
182
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → Fun 𝑏 ) |
| 232 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝐼 ∖ { 𝑌 } ) ) |
| 233 |
3
|
eleq2i |
⊢ ( 𝑌 ∈ 𝐽 ↔ 𝑌 ∈ ( 𝐼 ∖ { 𝑌 } ) ) |
| 234 |
232 233
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝐽 ) |
| 235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ¬ 𝑌 ∈ 𝐽 ) |
| 236 |
182
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → dom 𝑏 = 𝐽 ) |
| 237 |
235 236
|
neleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ¬ 𝑌 ∈ dom 𝑏 ) |
| 238 |
|
df-nel |
⊢ ( 𝑌 ∉ dom 𝑏 ↔ ¬ 𝑌 ∈ dom 𝑏 ) |
| 239 |
237 238
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑌 ∉ dom 𝑏 ) |
| 240 |
231 239
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( Fun 𝑏 ∧ 𝑌 ∉ dom 𝑏 ) ) |
| 241 |
|
funsnfsupp |
⊢ ( ( ( 𝑌 ∈ 𝐼 ∧ 0 ∈ ℕ0 ) ∧ ( Fun 𝑏 ∧ 𝑌 ∉ dom 𝑏 ) ) → ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) finSupp 0 ↔ 𝑏 finSupp 0 ) ) |
| 242 |
241
|
biimpar |
⊢ ( ( ( ( 𝑌 ∈ 𝐼 ∧ 0 ∈ ℕ0 ) ∧ ( Fun 𝑏 ∧ 𝑌 ∉ dom 𝑏 ) ) ∧ 𝑏 finSupp 0 ) → ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) finSupp 0 ) |
| 243 |
230 240 193 242
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) finSupp 0 ) |
| 244 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 𝑌 ∈ 𝐼 ) |
| 245 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℕ0 ) |
| 246 |
|
fsnunfv |
⊢ ( ( 𝑌 ∈ 𝐼 ∧ 0 ∈ ℕ0 ∧ ¬ 𝑌 ∈ dom 𝑏 ) → ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ‘ 𝑌 ) = 0 ) |
| 247 |
244 245 237 246
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ‘ 𝑌 ) = 0 ) |
| 248 |
243 247
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) finSupp 0 ∧ ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ‘ 𝑌 ) = 0 ) ) |
| 249 |
212 228 248
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) |
| 250 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → 𝑏 = ( 𝑐 ↾ 𝐽 ) ) |
| 251 |
250
|
uneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) = ( ( 𝑐 ↾ 𝐽 ) ∪ { 〈 𝑌 , 0 〉 } ) ) |
| 252 |
3
|
reseq2i |
⊢ ( 𝑐 ↾ 𝐽 ) = ( 𝑐 ↾ ( 𝐼 ∖ { 𝑌 } ) ) |
| 253 |
252
|
uneq1i |
⊢ ( ( 𝑐 ↾ 𝐽 ) ∪ { 〈 𝑌 , 0 〉 } ) = ( ( 𝑐 ↾ ( 𝐼 ∖ { 𝑌 } ) ) ∪ { 〈 𝑌 , 0 〉 } ) |
| 254 |
253
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → ( ( 𝑐 ↾ 𝐽 ) ∪ { 〈 𝑌 , 0 〉 } ) = ( ( 𝑐 ↾ ( 𝐼 ∖ { 𝑌 } ) ) ∪ { 〈 𝑌 , 0 〉 } ) ) |
| 255 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ℕ0 ∈ V ) |
| 256 |
18 255 25
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → 𝑐 : 𝐼 ⟶ ℕ0 ) |
| 257 |
256
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → 𝑐 : 𝐼 ⟶ ℕ0 ) |
| 258 |
257
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → 𝑐 Fn 𝐼 ) |
| 259 |
244
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → 𝑌 ∈ 𝐼 ) |
| 260 |
30
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → ( 𝑐 finSupp 0 ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) ) |
| 261 |
260
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → ( 𝑐 ‘ 𝑌 ) = 0 ) |
| 262 |
|
fresunsn |
⊢ ( ( 𝑐 Fn 𝐼 ∧ 𝑌 ∈ 𝐼 ∧ ( 𝑐 ‘ 𝑌 ) = 0 ) → ( ( 𝑐 ↾ ( 𝐼 ∖ { 𝑌 } ) ) ∪ { 〈 𝑌 , 0 〉 } ) = 𝑐 ) |
| 263 |
258 259 261 262
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → ( ( 𝑐 ↾ ( 𝐼 ∖ { 𝑌 } ) ) ∪ { 〈 𝑌 , 0 〉 } ) = 𝑐 ) |
| 264 |
251 254 263
|
3eqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑏 = ( 𝑐 ↾ 𝐽 ) ) → 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) |
| 265 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) → 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) |
| 266 |
265
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) → ( 𝑐 ↾ 𝐽 ) = ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ↾ 𝐽 ) ) |
| 267 |
182
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) → 𝑏 : 𝐽 ⟶ ℕ0 ) |
| 268 |
267
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) → 𝑏 Fn 𝐽 ) |
| 269 |
235
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) → ¬ 𝑌 ∈ 𝐽 ) |
| 270 |
|
fsnunres |
⊢ ( ( 𝑏 Fn 𝐽 ∧ ¬ 𝑌 ∈ 𝐽 ) → ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ↾ 𝐽 ) = 𝑏 ) |
| 271 |
268 269 270
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) → ( ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ↾ 𝐽 ) = 𝑏 ) |
| 272 |
266 271
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) ∧ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) → 𝑏 = ( 𝑐 ↾ 𝐽 ) ) |
| 273 |
264 272
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) ∧ 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ) → ( 𝑏 = ( 𝑐 ↾ 𝐽 ) ↔ 𝑐 = ( 𝑏 ∪ { 〈 𝑌 , 0 〉 } ) ) ) |
| 274 |
249 273
|
reu6dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ) → ∃! 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } 𝑏 = ( 𝑐 ↾ 𝐽 ) ) |
| 275 |
151 5 17 157 105 160 200 201 203 208 274
|
gsummptfsf1o |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ℎ finSupp 0 ∧ ( ℎ ‘ 𝑌 ) = 0 ) } ↦ ( ( 𝐹 ‘ ( 𝑐 ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( ( 𝑐 ↾ 𝐽 ) ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 276 |
103 150 275
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 277 |
1 5
|
evlval |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |
| 278 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) |
| 279 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) ) |
| 280 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
| 281 |
5
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 282 |
104 281
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 283 |
5
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 284 |
7 283
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 285 |
284
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐼 mPoly 𝑅 ) ) |
| 286 |
285
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 287 |
140 286
|
eleqtrrd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) ) ) |
| 288 |
5
|
fvexi |
⊢ 𝐵 ∈ V |
| 289 |
288
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 290 |
289 8 11
|
elmapdd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 291 |
277 278 279 280 138 5 37 60 129 8 7 282 287 290
|
evlsvvval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑐 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 292 |
2 5
|
evlval |
⊢ 𝑂 = ( ( 𝐽 evalSub 𝑅 ) ‘ 𝐵 ) |
| 293 |
|
eqid |
⊢ ( 𝐽 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐽 mPoly ( 𝑅 ↾s 𝐵 ) ) |
| 294 |
|
eqid |
⊢ ( Base ‘ ( 𝐽 mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( Base ‘ ( 𝐽 mPoly ( 𝑅 ↾s 𝐵 ) ) ) |
| 295 |
10 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 296 |
284
|
oveq2d |
⊢ ( 𝜑 → ( 𝐽 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐽 mPoly 𝑅 ) ) |
| 297 |
296
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝐽 mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 298 |
295 297
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐽 mPoly ( 𝑅 ↾s 𝐵 ) ) ) ) |
| 299 |
290 173
|
elmapssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐽 ) ∈ ( 𝐵 ↑m 𝐽 ) ) |
| 300 |
292 293 294 280 163 5 37 60 129 174 7 282 298 299
|
evlsvvval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐴 ↾ 𝐽 ) ) = ( 𝑅 Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 301 |
276 291 300
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( 𝐸 ‘ 𝑌 ) ‘ 𝐹 ) ) ‘ 𝐴 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐴 ↾ 𝐽 ) ) ) |