Metamath Proof Explorer


Theorem evlvarval

Description: Polynomial evaluation builder for a variable. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses evlvarval.1 𝑄 = ( 𝐼 eval 𝑆 )
evlvarval.2 𝑃 = ( 𝐼 mPoly 𝑆 )
evlvarval.3 𝐾 = ( Base ‘ 𝑆 )
evlvarval.4 𝐵 = ( Base ‘ 𝑃 )
evlvarval.5 = ( .r𝑃 )
evlvarval.6 · = ( .r𝑆 )
evlvarval.7 ( 𝜑𝐼𝑍 )
evlvarval.8 ( 𝜑𝑆 ∈ CRing )
evlvarval.9 ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
evlvarval.10 𝑉 = ( 𝐼 mVar 𝑆 )
evlvarval.11 ( 𝜑𝑋𝐼 )
Assertion evlvarval ( 𝜑 → ( ( 𝑉𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑉𝑋 ) ) ‘ 𝐴 ) = ( 𝐴𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 evlvarval.1 𝑄 = ( 𝐼 eval 𝑆 )
2 evlvarval.2 𝑃 = ( 𝐼 mPoly 𝑆 )
3 evlvarval.3 𝐾 = ( Base ‘ 𝑆 )
4 evlvarval.4 𝐵 = ( Base ‘ 𝑃 )
5 evlvarval.5 = ( .r𝑃 )
6 evlvarval.6 · = ( .r𝑆 )
7 evlvarval.7 ( 𝜑𝐼𝑍 )
8 evlvarval.8 ( 𝜑𝑆 ∈ CRing )
9 evlvarval.9 ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
10 evlvarval.10 𝑉 = ( 𝐼 mVar 𝑆 )
11 evlvarval.11 ( 𝜑𝑋𝐼 )
12 8 crngringd ( 𝜑𝑆 ∈ Ring )
13 2 10 4 7 12 11 mvrcl ( 𝜑 → ( 𝑉𝑋 ) ∈ 𝐵 )
14 fveq1 ( 𝑎 = 𝐴 → ( 𝑎𝑋 ) = ( 𝐴𝑋 ) )
15 1 10 3 7 8 11 evlvar ( 𝜑 → ( 𝑄 ‘ ( 𝑉𝑋 ) ) = ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑋 ) ) )
16 3 fvexi 𝐾 ∈ V
17 16 a1i ( 𝜑𝐾 ∈ V )
18 7 17 9 elmaprd ( 𝜑𝐴 : 𝐼𝐾 )
19 18 11 ffvelcdmd ( 𝜑 → ( 𝐴𝑋 ) ∈ 𝐾 )
20 14 15 9 19 fvmptd4 ( 𝜑 → ( ( 𝑄 ‘ ( 𝑉𝑋 ) ) ‘ 𝐴 ) = ( 𝐴𝑋 ) )
21 13 20 jca ( 𝜑 → ( ( 𝑉𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑉𝑋 ) ) ‘ 𝐴 ) = ( 𝐴𝑋 ) ) )