| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴 ) → 𝐴 ⊆ 𝑂 ) |
| 2 |
|
simp3 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
| 3 |
1 2
|
sseldd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝑂 ) |
| 4 |
|
indfval |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐴 , 1 , 0 ) ) |
| 5 |
3 4
|
syld3an3 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐴 , 1 , 0 ) ) |
| 6 |
|
iftrue |
⊢ ( 𝑋 ∈ 𝐴 → if ( 𝑋 ∈ 𝐴 , 1 , 0 ) = 1 ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴 ) → if ( 𝑋 ∈ 𝐴 , 1 , 0 ) = 1 ) |
| 8 |
5 7
|
eqtrd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑋 ) = 1 ) |