| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
extvval.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
extvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
extvval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 5 |
|
extvfval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) |
| 6 |
|
extvfval.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝐴 } ) |
| 7 |
|
extvfval.m |
⊢ 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 8 |
|
sneq |
⊢ ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } ) |
| 9 |
8
|
difeq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝐼 ∖ { 𝑎 } ) = ( 𝐼 ∖ { 𝐴 } ) ) |
| 10 |
9 6
|
eqtr4di |
⊢ ( 𝑎 = 𝐴 → ( 𝐼 ∖ { 𝑎 } ) = 𝐽 ) |
| 11 |
10
|
fvoveq1d |
⊢ ( 𝑎 = 𝐴 → ( Base ‘ ( ( 𝐼 ∖ { 𝑎 } ) mPoly 𝑅 ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 12 |
11 7
|
eqtr4di |
⊢ ( 𝑎 = 𝐴 → ( Base ‘ ( ( 𝐼 ∖ { 𝑎 } ) mPoly 𝑅 ) ) = 𝑀 ) |
| 13 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑥 ‘ 𝑎 ) = 0 ↔ ( 𝑥 ‘ 𝐴 ) = 0 ) ) |
| 14 |
10
|
reseq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) = ( 𝑥 ↾ 𝐽 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) = ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) ) |
| 16 |
13 15
|
ifbieq1d |
⊢ ( 𝑎 = 𝐴 → if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) = if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) |
| 17 |
16
|
mpteq2dv |
⊢ ( 𝑎 = 𝐴 → ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) |
| 18 |
12 17
|
mpteq12dv |
⊢ ( 𝑎 = 𝐴 → ( 𝑓 ∈ ( Base ‘ ( ( 𝐼 ∖ { 𝑎 } ) mPoly 𝑅 ) ) ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) = ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) ) |
| 19 |
|
eqid |
⊢ ( 𝐼 ∖ { 𝑎 } ) = ( 𝐼 ∖ { 𝑎 } ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( ( 𝐼 ∖ { 𝑎 } ) mPoly 𝑅 ) ) = ( Base ‘ ( ( 𝐼 ∖ { 𝑎 } ) mPoly 𝑅 ) ) |
| 21 |
1 2 3 4 19 20
|
extvval |
⊢ ( 𝜑 → ( 𝐼 extendVars 𝑅 ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝐼 ∖ { 𝑎 } ) mPoly 𝑅 ) ) ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) ) ) |
| 22 |
7
|
fvexi |
⊢ 𝑀 ∈ V |
| 23 |
22
|
mptex |
⊢ ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) ∈ V |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) ∈ V ) |
| 25 |
18 21 5 24
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝐼 extendVars 𝑅 ) ‘ 𝐴 ) = ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝐴 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ 𝐽 ) ) , 0 ) ) ) ) |