| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
extvval.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
extvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
extvval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 5 |
|
extvval.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝑎 } ) |
| 6 |
|
extvval.m |
⊢ 𝑀 = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 7 |
|
df-extv |
⊢ extendVars = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → extendVars = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → 𝑖 = 𝐼 ) |
| 10 |
|
difeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∖ { 𝑎 } ) = ( 𝐼 ∖ { 𝑎 } ) ) |
| 11 |
10 5
|
eqtr4di |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∖ { 𝑎 } ) = 𝐽 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 ∖ { 𝑎 } ) = 𝐽 ) |
| 13 |
|
simpr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
| 14 |
12 13
|
oveq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) = ( 𝐽 mPoly 𝑅 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 16 |
15 6
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) = 𝑀 ) |
| 17 |
|
oveq2 |
⊢ ( 𝑖 = 𝐼 → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 18 |
17
|
rabeqdv |
⊢ ( 𝑖 = 𝐼 → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 19 |
18 1
|
eqtr4di |
⊢ ( 𝑖 = 𝐼 → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } = 𝐷 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } = 𝐷 ) |
| 21 |
10
|
reseq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) = ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) = ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) = ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 26 |
25 2
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = 0 ) |
| 27 |
23 26
|
ifeq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) = if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) |
| 28 |
20 27
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) |
| 29 |
16 28
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) = ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) ) |
| 30 |
9 29
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑎 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ( 𝑎 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) ) ) |
| 32 |
3
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 33 |
4
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 34 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) ) ∈ V ) |
| 35 |
8 31 32 33 34
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 extendVars 𝑅 ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ 𝐷 ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝐼 ∖ { 𝑎 } ) ) ) , 0 ) ) ) ) ) |